In dusty plasma environments, spontaneous growth of nanoparticles from reactive gases has been extensively studied for over three decades, primarily focusing on hydrocarbons and silicate particles. Here, we introduce the growth of titanium dioxide, a wide bandgap semiconductor, as dusty plasma nanoparticles. The resultant particles exhibited a spherical morphology and reached a maximum monodisperse radius of 235 ± 20 nm after growing for 70 s. The particle grew linearly, and the growth displayed a cyclic behavior; that is, upon reaching their maximum radius, the largest particles fell out of the plasma, and the next growth cycle immediately followed. The particles were collected after being grown for different amounts of time and imaged using scanning electron microscopy. Further characterization was carried out using energy dispersive x-ray spectroscopy, x-ray diffraction, and Raman spectroscopy to elucidate the chemical composition and crystalline properties of the maximally sized particles. Initially, the as-grown particles exhibited an amorphous structure after 70 s. However, annealing treatments at temperatures of 400 and 800 °C induced crystallization, yielding anatase and rutile phases, respectively. Annealing at 600 °C resulted in a mixed phase of anatase and rutile. These findings open avenues for a rapid and controlled growth of titanium dioxide via dusty plasma.

1.
E.
Kovačević
,
I.
Stefanović
,
J.
Berndt
, and
J.
Winter
, “
Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas
,”
J. Appl. Phys.
93
,
2924
2930
(
2003
).
2.
E.
Kovačević
,
J.
Berndt
,
I.
Stefanović
,
H.-W.
Becker
,
C.
Godde
,
T.
Strunskus
,
J.
Winter
, and
L.
Boufendi
, “
Formation and material analysis of plasma polymerized carbon nitride nanoparticles
,”
J. Appl. Phys.
105
,
104910
(
2009
).
3.
E.
Kovacevic
,
J.
Berndt
,
T.
Strunskus
, and
L.
Boufendi
, “
Size dependent characteristics of plasma synthesized carbonaceous nanoparticles
,”
J. Appl. Phys.
112
,
013303
(
2012
).
4.
L.
Couëdel
,
D.
Artis
,
M. P.
Khanal
,
C.
Pardanaud
,
S.
Coussan
,
S.
LeBlanc
,
T.
Hall
,
E.
Thomas
, Jr.
,
U.
Konopka
,
M.
Park
, and
C.
Arnas
, “
Influence of magnetic field strength on nanoparticle growth in a capacitively-coupled radio-frequency Ar/C2H2 discharge
,”
Plasma Res. Express
1
,
015012
(
2019
).
5.
A.
Bouchoule
and
L.
Boufendi
, “
Particulate formation and dusty plasma behaviour in argon-silane RF discharge
,”
Plasma Sources Sci. Technol.
2
,
204
(
1993
).
6.
Y.
Watanabe
and
M.
Shiratani
, “
Growth kinetics and behavior of dust particles in silane plasmas
,”
Jpn. J. Appl. Phys., Part 1
32
,
3074
(
1993
).
7.
L.
Boufendi
and
A.
Bouchoule
, “
Particle nucleation and growth in a low-pressure argon-silane discharge
,”
Plasma Sources Sci. Technol.
3
,
262
(
1994
).
8.
B.
Ganguly
,
A.
Garscadden
,
J.
Williams
, and
P.
Haaland
, “
Growth and morphology of carbon grains
,”
J. Vac. Sci. Technol., A
11
,
1119
1125
(
1993
).
9.
A.
Garscadden
,
B.
Ganguly
,
P.
Haaland
, and
J.
Williams
, “
Overview of growth and behaviour of clusters and particles in plasmas
,”
Plasma Sources Sci. Technol.
3
,
239
(
1994
).
10.
J.
Cao
and
T.
Matsoukas
, “
Deposition kinetics on particles in a dusty plasma reactor
,”
J. Appl. Phys.
92
,
2916
2922
(
2002
).
11.
F.
Galli
and
U. R.
Kortshagen
, “
Charging, coagulation, and heating model of nanoparticles in a low-pressure plasma accounting for ion–neutral collisions
,”
IEEE Trans. Plasma Sci.
38
,
803
809
(
2010
).
12.
B.
Chutia
,
T.
Deka
,
Y.
Bailung
,
S.
Sharma
, and
H.
Bailung
, “
A nanodusty plasma experiment to create extended dust clouds using reactive argon acetylene plasmas
,”
Phys. Plasmas
28
,
063703
(
2021
).
13.
U.
Kortshagen
, “
Nonthermal plasma synthesis of semiconductor nanocrystals
,”
J. Phys. D
42
,
113001
(
2009
).
14.
L.
Boufendi
,
M.
Jouanny
,
E.
Kovacevic
,
J.
Berndt
, and
M.
Mikikian
, “
Dusty plasma for nanotechnology
,”
J. Phys. D
44
,
174035
(
2011
).
15.
B.
Despax
,
K.
Makasheva
, and
H.
Caquineau
, “
Cyclic powder formation during pulsed injection of hexamethyldisiloxane in an axially asymmetric radiofrequency argon discharge
,”
J. Appl. Phys.
112
,
093302
(
2012
).
16.
C.
Pattyn
,
E.
Kovacevic
,
S.
Hussain
,
A.
Dias
,
T.
Lecas
, and
J.
Berndt
, “
Nanoparticle formation in a low pressure argon/aniline RF plasma
,”
Appl. Phys. Lett.
112
,
013102
(
2018
).
17.
T. J.
Cameron
,
B.
Klause
,
H. P.
Andaraarachchi
,
Z.
Xiong
,
C.
Reed
,
D.
Thapa
,
C.-C.
Wu
, and
U. R.
Kortshagen
, “
Capacitively coupled nonthermal plasma synthesis of aluminum nanocrystals for enhanced yield and size control
,”
Nanotechnology
34
,
395601
(
2023
).
18.
H.
Wang
,
C.
Lin
, and
M.
Hon
, “
The dependence of hardness on the density of amorphous alumina thin films by PECVD
,”
Thin Solid Films
310
,
260
264
(
1997
).
19.
T.
Shirafuji
,
Y.
Miyazaki
,
Y.
Nakagami
,
Y.
Hayashi
, and
S.
Nishino
, “
Plasma copolymerization of tetrafluoroethylene/hexamethyldisiloxane and in situ Fourier transform infrared spectroscopy of its gas phase
,”
Jpn. J. Appl. Phys., Part 1
38
,
4520
4526
(
1999
).
20.
Y.
Shioya
,
H.
Shimoda
,
K.
Maeda
,
T.
Ohdaira
,
R.
Suzuki
, and
Y.
Seino
, “
Low-k SiOCH film deposited by plasma-enhanced chemical vapor deposition using hexamethyldisiloxane and water vapor
,”
Jpn. J. Appl. Phys., Part 1
44
,
3879
3884
(
2005
).
21.
A.
Airoudj
,
D.
Debarnot
,
B.
Bêche
, and
F.
Poncin-Epaillard
, “
New sensitive layer based on pulsed plasma-polymerized aniline for integrated optical ammonia sensor
,”
Anal. Chim. Acta
626
,
44
52
(
2008
).
22.
W.
Lee
,
S. I.
Woo
,
J.
Kim
,
S.
Choi
, and
K.
Oh
, “
Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition
,”
Thin Solid Films
237
,
105
111
(
1994
).
23.
W.
Yang
and
C.
Wolden
, “
Plasma-enhanced chemical vapor deposition of TiO2 thin films for dielectric applications
,”
Thin Solid Films
515
,
1708
1713
(
2006
).
24.
J.
Aarik
,
A.
Aidla
,
T.
Uustare
,
M.
Ritala
, and
M.
Leskelä
, “
Titanium isopropoxide as a precursor for atomic layer deposition: Characterization of titanium dioxide growth process
,”
Appl. Surf. Sci.
161
,
385
395
(
2000
).
25.
J.
Lee
,
S. J.
Lee
,
W. B.
Han
,
H.
Jeon
,
J.
Park
,
W.
Jang
,
C. S.
Yoon
, and
H.
Jeon
, “
Deposition temperature dependence of titanium oxide thin films grown by remote-plasma atomic layer deposition
,”
Phys. Status Solidi A
210
,
276
284
(
2013
).
26.
B.
Jalan
,
R.
Engel-Herbert
,
J.
Cagnon
, and
S.
Stemmer
, “
Growth modes in metal-organic molecular beam epitaxy of TiO2 on r-plane sapphire
,”
J. Vac. Sci. Technol., A
27
,
230
233
(
2009
).
27.
S.
Huang
and
J.-S.
Chen
, “
Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhanced chemical vapor deposition
,”
J. Mater. Sci.: Mater. Electron.
13
,
77
81
(
2002
).
28.
H.
Nguyen
,
D.
Kim
,
D.
Park
, and
K.
Kim
, “
Effect of initial precursor concentration on TiO2 thin film nanostructures prepared by PCVD system
,”
J. Energy Chem.
22
,
375
381
(
2013
).
29.
B.
Stoner
,
G.-H. M.
Ma
,
S. D.
Wolter
, and
J.
Glass
, “
Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy
,”
Phys. Rev. B
45
,
11067
(
1992
).
30.
M.
Kuhr
,
S.
Reinke
, and
W.
Kulisch
, “
Nucleation of cubic boron nitride (c-BN) with ion-induced plasma-enhanced CVD
,”
Diamond Relat. Mater.
4
,
375
380
(
1995
).
31.
B.
Ramkorun
,
K.
Chakrabarty
, and
S.
Catledge
, “
Effects of direct current bias on nucleation density of superhard boron-rich boron carbide films made by microwave plasma chemical vapor deposition
,”
Mater. Res. Express
8
,
046401
(
2021
).
32.
L.
Ravi
and
S.
Girshick
, “
Coagulation of nanoparticles in a plasma
,”
Phys. Rev. E
79
,
026408
(
2009
).
33.
S.
Groth
,
F.
Greiner
,
B.
Tadsen
, and
A.
Piel
, “
Kinetic Mie ellipsometry to determine the time-resolved particle growth in nanodusty plasmas
,”
J. Phys. D
48
,
465203
(
2015
).
34.
J.
Zhang
,
P.
Zhou
,
J.
Liu
, and
J.
Yu
, “
New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO 2
,”
Phys. Chem. Chem. Phys.
16
,
20382
20386
(
2014
).
35.
T.
Luttrell
,
S.
Halpegamage
,
J.
Tao
,
A.
Kramer
,
E.
Sutter
, and
M.
Batzill
, “
Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films
,”
Sci. Rep.
4
,
4043
(
2014
).
36.
J.
Berndt
,
S.
Hong
,
E.
Kovačević
,
I.
Stefanović
, and
J.
Winter
, “
Dust particle formation in low pressure Ar/CH4 and Ar/C2H2 discharges used for thin film deposition
,”
Vacuum
71
,
377
390
(
2003
).
37.
R.
Merlino
,
Dusty Plasmas and Applications in Space and Industry
(
Transworld Research Network Kerala
,
India
,
2006
), Vol.
81
, pp.
73
110
.
38.
F. V.
de Wetering
,
R.
Brooimans
,
S.
Nijdam
,
J.
Beckers
, and
G.
Kroesen
, “
Fast and interrupted expansion in cyclic void growth in dusty plasma
,”
J. Phys. D
48
,
035204
(
2015
).
39.
G.
Norlén
, “
Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the Region 3 400-9 800 Å
,”
Phys. Scr.
8
,
249
(
1973
).
40.
W.
Wiese
,
J.
Brault
,
K.
Danzmann
,
V.
Helbig
, and
M.
Kock
, “
Unified set of atomic transition probabilities for neutral argon
,”
Phys. Rev. A
39
,
2461
(
1989
).
41.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database (ver. 5.10)
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2022
).
42.
U.
Balachandran
and
N.
Eror
, “
Raman spectra of titanium dioxide
,”
J. Solid State Chem.
42
,
276
282
(
1982
).
43.
W.
Stöber
,
A.
Fink
, and
E.
Bohn
, “
Controlled growth of monodisperse silica spheres in the micron size range
,”
J. Colloid Interface Sci.
26
,
62
69
(
1968
).
44.
J.
Liu
,
S. Z.
Qiao
,
H.
Liu
,
J.
Chen
,
A.
Orpe
,
D.
Zhao
, and
G. Q.
Lu
, “
Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres
,”
Angew. Chem.
123
,
6069
6073
(
2011
).
45.
Y.
Wang
,
H.
Yang
, and
W.
Zou
, “
Preparation of amorphous sphere-like TiO2 with excellent photocatalytic performance
,”
Mater. Lett.
254
,
54
57
(
2019
).
46.
C. P.
Fictorie
,
J. F.
Evans
, and
W. L.
Gladfelter
, “
Kinetic and mechanistic study of the chemical vapor deposition of titanium dioxide thin films using tetrakis-(isopropoxo)-titanium (IV)
,”
J. Vac. Sci. Technol., A
12
,
1108
1113
(
1994
).
47.
K.-H.
Ahn
,
Y.-B.
Park
, and
D.-W.
Park
, “
Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP
,”
Surf. Coat. Technol.
171
,
198
204
(
2003
).
48.
G.
Kroesen
,
J.
Den Boer
,
L.
Boufendi
,
F.
Vivet
,
M.
Khouli
,
A.
Bouchoule
, and
F.
De Hoog
, “
In situ infrared absorption spectroscopy of dusty plasmas
,”
J. Vac. Sci. Technol., A
14
,
546
549
(
1996
).
49.
C.
Deschenaux
,
A.
Affolter
,
D.
Magni
,
C.
Hollenstein
, and
P.
Fayet
, “
Investigations of CH4, C2H2 and C2H4 dusty rf plasmas by means of FTIR absorption spectroscopy and mass spectrometry
,”
J. Phys. D
32
,
1876
(
1999
).
50.
K.
Ouaras
,
L. C.
Delacqua
,
G.
Lombardi
,
J.
Röpcke
,
M.
Wartel
,
X.
Bonnin
,
M.
Redolfi
, and
K.
Hassouni
, “
In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry
,”
J. Plasma Phys.
80
,
833
841
(
2014
).
51.
I.
Denysenko
,
E.
von Wahl
,
S.
Labidi
,
M.
Mikikian
,
H.
Kersten
,
T.
Gibert
,
E.
Kovačević
, and
N. A.
Azarenkov
, “
Modeling of argon–acetylene dusty plasma
,”
Plasma Phys. Controlled Fusion
61
,
014014
(
2018
).
52.
I.
Stefanovic
,
E.
Kovacevic
,
J.
Berndt
, and
J.
Winter
, “
Hα emission in the presence of dust in an Ar-C2H2 radio-frequency discharge
,”
New J. Phys.
5
,
39
(
2003
).
53.
T.
Donders
,
T.
Staps
, and
J.
Beckers
, “
Characterization of cyclic dust growth in a low-pressure, radio-frequency driven argon-hexamethyldisiloxane plasma
,”
J. Phys. D
55
,
395203
(
2022
).
54.
A.
Fridman
,
L.
Boufendi
,
T.
Hbid
,
B.
Potapkin
, and
A.
Bouchoule
, “
Dusty plasma formation: Physics and critical phenomena. Theoretical approach
,”
J. Appl. Phys.
79
,
1303
1314
(
1996
).
55.
B.
Ramkorun
,
G.
Chandrasekhar
,
V.
Rangari
,
S. C.
Thakur
,
R. B.
Comes
, and
E.
Thomas
, Jr.
, “
Comparing growth of titania and carbonaceous dusty nanoparticles in weakly magnetised capacitively coupled plasmas
,” arXiv:2402.00951 (
2024
).
56.
X.
Shi
,
P.
Elvati
, and
A.
Violi
, “
On the growth of Si nanoparticles in non-thermal plasma: Physisorption to chemisorption conversion
,”
J. Phys. D
54
,
365203
(
2021
).
57.
J.
Winter
, “
Dust in fusion devices—A multi-faceted problem connecting high-and low-temperature plasma physics
,”
Plasma Phys. Controlled Fusion
46
,
B583
(
2004
).
58.
B.
Ramkorun
(
2023
). “Ar/TTIP dust cloud,”
Auburn University
. http://dx.doi.org/10.35099/aurora-696
You do not currently have access to this content.