The structural evolution of lone-pair compounds under high-pressure and high-temperature conditions has been a subject of fundamental interest in revealing modulated polymorphs. As one of the archetypal lone-pair compounds, selenium dioxide (SeO2) has attracted much attention due to the pressure modulation of its one-dimensional infinite W-shaped chain arrangement. Here, through swarm intelligence algorithm in conjunction with the first-principles simulation, we propose the existence of an orthorhombic Pnma-SeO2 structure, characterized by V-shaped chains interconnected via vertex-sharing SeO3 pyramids. These V-shaped chains demonstrate reduced compressibility along their chain direction compared to the W-shaped chains. Calculations indicate that Pnma-SeO2 is a semiconductor with a large indirect bandgap of 2.39 eV. Remarkably, we synthesized the predicted Pnma-SeO2 in a laser-heated diamond anvil cell at a pressure of 48.5 or 87 GPa as identified by in situ synchrotron x-ray diffraction data. Our findings lead to a significant extension of the phase diagram and transition path of SeO2 and provide key insights into understanding the pressure modulation in lone-pair compounds.

1.
S.
Andersson
,
A.
Åström
,
J.
Galy
, and
G.
Meunier
, “
Simple calculations of bond lengths and bond angles in certain oxides, fluorides or oxide fluorides of Sb3+, Te4+ and Pb2+
,”
J. Solid State Chem.
6
,
187
(
1973
).
2.
J.
Galy
,
G.
Meunier
,
S.
Andersson
, and
A.
Åström
, “
Stéréochimie des Eléments Comportant des Paires Non Liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures)
,”
J. Solid State Chem.
13
,
142
(
1975
).
3.
R.
Ali Saha
,
A.
Halder
,
D.
Fu
,
M.
Itoh
,
T.
Saha-Dasgupta
, and
S.
Ray
, “
The critical role of stereochemically active lone pair in introducing high temperature ferroelectricity
,”
Inorg. Chem.
60
,
4068
(
2021
).
4.
E. J.
Skoug
and
D. T.
Morelli
, “
Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds
,”
Phys. Rev. Lett.
107
,
235901
(
2011
).
5.
B.
Du
,
R.
Zhang
,
K.
Chen
,
A.
Mahajan
, and
M. J.
Reece
, “
The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2
,”
J. Mater. Chem. A
5
,
3249
(
2017
).
6.
A.
Grzechnik
,
L.
Farina
,
R.
Lauck
,
K.
Syassen
,
I.
Loa
, and
P.
Bouvier
, “
Pressure-induced structural deformations in SeO2
,”
J. Solid State Chem.
168
,
184
(
2002
).
7.
J. D.
McCullough
, “
The crystal structure of selenium dioxide
,”
J. Am. Chem. Soc.
59
,
789
(
1937
).
8.
D.
Orosel
,
O.
Leynaud
,
P.
Balog
, and
M.
Jansen
, “
Pressure–temperature phase diagram of SeO2. Characterization of new phases
,”
J. Solid State Chem.
177
,
1631
(
2004
).
9.
C.
Lu
,
M.
Miao
, and
Y.
Ma
, “
Structural evolution of carbon dioxide under high pressure
,”
J. Am. Chem. Soc.
135
,
14167
(
2013
).
10.
C. S.
Yoo
,
H.
Cynn
, and
V.
Iota
, “
Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures
,”
Science
283
,
1510
(
1999
).
11.
A.
Goncharov
,
V.
Struzhkin
,
M.
Somayazulu
,
R.
Hemley
, and
H.-K.
Mao
, “
Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase
,”
Science
273
,
218
(
1996
).
12.
Y.
Akahama
,
H.
Kawamura
,
D.
Häusermann
,
M.
Hanfland
, and
O.
Shimomura
, “
New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid
,”
Phys. Rev. Lett.
74
,
4690
(
1995
).
13.
A.
Jaffe
,
Y.
Lin
,
W. L.
Mao
, and
H. I.
Karunadasa
, “
Pressure-induced metallization of the halide perovskite (CH3NH3) PbI3
,”
J. Am. Chem. Soc.
139
,
4330
(
2017
).
14.
S.
Ninet
,
F.
Datchi
,
P.
Dumas
,
M.
Mezouar
,
G.
Garbarino
,
A.
Mafety
,
C.
Pickard
,
R.
Needs
, and
A.
Saitta
, “
Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure
,”
Phys. Rev. B
89
,
174103
(
2014
).
15.
F.
Bolduan
,
H.
Jodl
, and
A.
Loewenschuss
, “
Raman study of solid N2O4: Temperature induced autoionization
,”
J. Chem. Phys.
80
,
1739
(
1984
).
16.
J.
Sun
,
D. D.
Klug
,
C. J.
Pickard
, and
R. J.
Needs
, “
Controlling the bonding and band gaps of solid carbon monoxide with pressure
,”
Phys. Rev. Lett.
106
,
145502
(
2011
).
17.
M.
Einaga
,
M.
Sakata
,
T.
Ishikawa
,
K.
Shimizu
,
M. I.
Eremets
,
A. P.
Drozdov
,
I. A.
Troyan
,
N.
Hirao
, and
Y.
Ohishi
, “
Crystal structure of the superconducting phase of sulfur hydride
,”
Nat. Phys.
12
,
835
(
2016
).
18.
M.
Somayazulu
,
A.
Madduri
,
A. F.
Goncharov
,
O.
Tschauner
,
P. F.
McMillan
,
H.-K.
Mao
, and
R. J.
Hemley
, “
Novel broken symmetry phase from N2O at high pressures and high temperatures
,”
Phys. Rev. Lett.
87
,
135504
(
2001
).
19.
W.
Lu
,
S.
Liu
,
G.
Liu
,
K.
Hao
,
M.
Zhou
,
P.
Gao
,
H.
Wang
,
J.
Lv
,
H.
Gou
,
G.
Yang
et al, “
Disproportionation of SO2 at high pressure and temperature
,”
Phys. Rev. Lett.
128
,
106001
(
2022
).
20.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
(
2012
).
21.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Van der Waals density functionals applied to solids
,”
Phys. Rev. B
83
,
195131
(
2011
).
22.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the van der Waals density functional
,”
J. Phys.: Condens. Matter
22
,
022201
(
2009
).
23.
I.
Hamada
, “
Van der Waals density functional made accurate
,”
Phys. Rev. B
89
,
121103
(
2014
).
24.
J.
Ning
,
M.
Kothakonda
,
J. W.
Furness
,
A. D.
Kaplan
,
S.
Ehlert
,
J. G.
Brandenburg
,
J. P.
Perdew
, and
J.
Sun
, “
Workhorse minimally empirical dispersion-corrected density functional with tests for weakly bound systems: r2SCAN + rVV10
,”
Phys. Rev. B
106
,
075422
(
2022
).
25.
R.
Sabatini
,
T.
Gorni
, and
S.
De Gironcoli
, “
Nonlocal van der Waals density functional made simple and efficient
,”
Phys. Rev. B
87
,
041108
(
2013
).
26.
H.
Peng
,
Z.-H.
Yang
,
J. P.
Perdew
, and
J.
Sun
, “
Versatile van der Waals density functional based on a meta-generalized gradient approximation
,”
Phys. Rev. X
6
,
041005
(
2016
).
27.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Van der Waals density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
28.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
, “
Higher-accuracy van der Waals density functional
,”
Phys. Rev. B
82
,
081101
(
2010
).
29.
K.
Berland
and
P.
Hyldgaard
, “
Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional
,”
Phys. Rev. B
89
,
035412
(
2014
).
30.
K.
Ståhl
, “
The crystal structure of SeO2 at 139 and 286 K
,”
Z. Kris.-Cryst. Mater.
202
,
99
(
1992
).
31.
S.
Liu
,
P.
Gao
,
A.
Hermann
,
G.
Yang
,
J.
Lv
,
Y.
Ma
,
H.-K.
Mao
, and
Y.
Wang
, “
Stabilization of S3O4 at high pressure: Implications for the sulfur-excess paradox
,”
Sci. Bull.
67
,
971
(
2022
).
32.
H.
Zhang
,
O.
Tóth
,
X.-D.
Liu
,
R.
Bini
,
E.
Gregoryanz
,
P.
Dalladay-Simpson
,
S.
De Panfilis
,
M.
Santoro
,
F. A.
Gorelli
, and
R.
Martoňák
, “
Pressure-induced amorphization and existence of molecular and polymeric amorphous forms in dense SO2
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
8736
(
2020
).
33.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
, “
First-principles calculations of the ferroelastic transition between rutile-type and CACl2-type SiO2 at high pressures
,”
Phys. Rev. B
78
,
134106
(
2008
).
34.
R. F.
Bader
, “
A quantum theory of molecular structure and its applications
,”
Chem. Rev.
91
,
893
(
1991
).
35.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
(
1990
).

Supplementary Material

You do not currently have access to this content.