The exchange bias effect, pivotal in magnetic data storage and sensing devices, has been observed not only in interfacial regions but also in intrinsic ferromagnetic materials. Here, we have uncovered a robust and stable exchange bias effect within the layered van der Waals (vdW) ferromagnet VI3 employing magnetic circular dichroism microscopy. At 10 K, we observed a significant exchange field of approximately 0.1 T, accompanied by random shifts (positive or negative relative to zero magnetic field) after zero-field cooling. Notably, this effect is effectively controllable after field cooling, with shift direction opposing the applied magnetic field. The presence of strong magnetic anisotropic energy within VI3 results in larger coercivity-bound magnetic domains. These domains dictate the neighboring ferromagnetic alignment and induce shifts in the hysteresis loop. Our study not only contributes to comprehending fundamental nanoscale magnetic interactions but also sheds light on emergent phenomena within layered van der Waals magnets.

1.
T. L.
Qu
,
Y. G.
Zhao
,
P.
Yu
,
H. C.
Zhao
,
S.
Zhang
, and
L. F.
Yang
,
Appl. Phys. Lett.
100
(
24
),
242410
(
2012
).
2.
W. H.
Meiklejohn
and
C. P.
Bean
,
Phys. Rev.
102
(
5
),
1413
1414
(
1956
).
3.
J.
Nogués
and
I. K.
Schuller
,
J. Magn. Magn. Mater.
192
(
2
),
203
232
(
1999
).
4.
W.
Liu
,
L.
He
,
Y.
Xu
,
K.
Murata
,
M. C.
Onbasli
,
M.
Lang
,
N. J.
Maltby
,
S.
Li
,
X.
Wang
,
C. A.
Ross
,
P.
Bencok
,
G.
van der Laan
,
R.
Zhang
, and
K. L.
Wang
,
Nano Lett.
15
(
1
),
764
769
(
2015
).
5.
C.
Wang
,
L.
Zhou
,
Q.
Fu
,
Y.
Tian
,
S.
Wang
,
H.
Gou
,
J.
Ai
,
L.
Zhang
, and
F.
Xue
,
J. Magn. Magn. Mater.
449
,
372
377
(
2018
).
6.
H.
Dai
,
H.
Cheng
,
M.
Cai
,
Q.
Hao
,
Y.
Xing
,
H.
Chen
,
X.
Chen
,
X.
Wang
, and
J.-B.
Han
,
ACS Appl. Mater. Interfaces
13
(
20
),
24314
24320
(
2021
).
7.
R.
Zhu
,
W.
Zhang
,
W.
Shen
,
P. K. J.
Wong
,
Q.
Wang
,
Q.
Liang
,
Z.
Tian
,
Y.
Zhai
,
C.-W.
Qiu
, and
A. T. S.
Wee
,
Nano Lett.
20
(
7
),
5030
5035
(
2020
).
8.
H. K.
Gweon
,
S. Y.
Lee
,
H. Y.
Kwon
,
J.
Jeong
,
H. J.
Chang
,
K.-W.
Kim
,
Z. Q.
Qiu
,
H.
Ryu
,
C.
Jang
, and
J. W.
Choi
,
Nano Lett.
21
(
4
),
1672
1678
(
2021
).
9.
S.
Hu
,
X.
Cui
,
Z.
Yue
,
P.
Wang
,
L.
Guo
,
K.
Ohnishi
,
X.
Wang
, and
T.
Kimura
,
2D Mater.
9
(
1
),
015037
(
2022
).
10.
T.
Shinwari
,
I.
Gelen
,
Y. A.
Shokr
,
I.
Kumberg
,
Ikramullah
,
M.
Sajjad
,
W.
Kuch
, and
M. Y.
Khan
,
Phys. Status Solidi RRL
15
(
9
),
2100195
(
2021
).
11.
G.
Vallejo-Fernandez
,
B.
Kaeswurm
, and
K.
O'Grady
,
J. Appl. Phys.
109
(
7
),
07D738
(
2011
).
12.
Z.
Zang
,
M.
Xi
,
S.
Tian
,
R.
Guzman
,
T.
Wang
,
W.
Zhou
,
H.
Lei
,
Y.
Huang
, and
Y.
Ye
,
ACS Appl. Electron. Mater.
4
(
7
),
3256
3262
(
2022
).
13.
G.-D.
Zhao
,
X.
Liu
,
T.
Hu
,
F.
Jia
,
Y.
Cui
,
W.
Wu
,
M.-H.
Whangbo
, and
W.
Ren
,
Phys. Rev. B
103
(
1
),
014438
(
2021
).
14.
E.
Gati
,
Y.
Inagaki
,
T.
Kong
,
R. J.
Cava
,
Y.
Furukawa
,
P. C.
Canfield
, and
S. L.
Bud'ko
,
Phys. Rev. B
100
(
9
),
094408
(
2019
).
15.
J.
Valenta
,
M.
Kratochvílová
,
M.
Míšek
,
K.
Carva
,
J.
Kaštil
,
P.
Doležal
,
P.
Opletal
,
P.
Čermák
,
P.
Proschek
,
K.
Uhlířová
,
J.
Prchal
,
M. J.
Coak
,
S.
Son
,
J. G.
Park
, and
V.
Sechovský
,
Phys. Rev. B
103
(
5
),
054424
(
2021
).
16.
X.
Zhang
,
L.
Wang
,
H.
Su
,
X.
Xia
,
C.
Liu
,
B.
Lyu
,
J.
Lin
,
M.
Huang
,
Y.
Cheng
,
J.-W.
Mei
, and
J.-F.
Dai
,
Nano Lett.
22
(
24
),
9891
9899
(
2022
).
17.
T.
Kong
,
K.
Stolze
,
E. I.
Timmons
,
J.
Tao
,
D.
Ni
,
S.
Guo
,
Z.
Yang
,
R.
Prozorov
, and
R. J.
Cava
,
Adv. Mater.
31
(
17
),
1808074
(
2019
).
18.
A.
Koriki
,
M.
Míšek
,
J.
Pospíšil
,
M.
Kratochvílová
,
K.
Carva
,
J.
Prokleška
,
P.
Doležal
,
J.
Kaštil
,
S.
Son
,
J. G.
Park
, and
V.
Sechovský
,
Phys. Rev. B
103
(
17
),
174401
(
2021
).
19.
P.
Doležal
,
M.
Kratochvílová
,
V.
Holý
,
P.
Čermák
,
V.
Sechovský
,
M.
Dušek
,
M.
Míšek
,
T.
Chakraborty
,
Y.
Noda
,
S.
Son
, and
J.-G.
Park
,
Phys. Rev. Mater.
3
(
12
),
121401
(
2019
).
20.
Y.
Hao
,
Y.
Gu
,
Y.
Gu
,
E.
Feng
,
H.
Cao
,
S.
Chi
,
H.
Wu
, and
J.
Zhao
,
Chin. Phys. Lett.
38
(
9
),
096101
(
2021
).
21.
D. A.
Broadway
,
S. C.
Scholten
,
C.
Tan
,
N.
Dontschuk
,
S. E.
Lillie
,
B. C.
Johnson
,
G.
Zheng
,
Z.
Wang
,
A. R.
Oganov
,
S.
Tian
,
C.
Li
,
H.
Lei
,
L.
Wang
,
L. C. L.
Hollenberg
, and
J.-P.
Tetienne
,
Adv. Mater.
32
(
39
),
2003314
(
2020
).
22.
G. P.
Zhao
,
L.
Zhao
,
L. C.
Shen
,
J.
Zou
, and
L.
Qiu
,
Chin. Phys. B
28
(
7
),
077505
(
2019
).
23.
G.
Zheng
,
W.-Q.
Xie
,
S.
Albarakati
,
M.
Algarni
,
C.
Tan
,
Y.
Wang
,
J.
Peng
,
J.
Partridge
,
L.
Farrar
,
J.
Yi
,
Y.
Xiong
,
M.
Tian
,
Y.-J.
Zhao
, and
L.
Wang
,
Phys. Rev. Lett.
125
(
4
),
047202
(
2020
).
24.
C.
Long
,
T.
Wang
,
H.
Jin
,
H.
Wang
, and
Y.
Dai
,
J. Phys. Chem. Lett.
11
(
6
),
2158
2164
(
2020
).
25.
T. P. T.
Nguyen
,
K.
Yamauchi
,
T.
Oguchi
,
D.
Amoroso
, and
S.
Picozzi
,
Phys. Rev. B
104
(
1
),
014414
(
2021
).
26.
D.
Soler-Delgado
,
F.
Yao
,
D.
Dumcenco
,
E.
Giannini
,
J.
Li
,
C. A.
Occhialini
,
R.
Comin
,
N.
Ubrig
, and
A. F.
Morpurgo
,
Nano Lett.
22
(
15
),
6149
6155
(
2022
).
27.
S.
Yang
,
X.
Xu
,
B.
Han
,
P.
Gu
,
R.
Guzman
,
Y.
Song
,
Z.
Lin
,
P.
Gao
,
W.
Zhou
,
J.
Yang
,
Z.
Chen
, and
Y.
Ye
,
J. Am. Chem. Soc.
145
(
51
),
28184
28190
(
2023
).
28.
D.
Hovančík
,
D.
Repček
,
F.
Borodavka
,
C.
Kadlec
,
K.
Carva
,
P.
Doležal
,
M.
Kratochvílová
,
P.
Kužel
,
S.
Kamba
,
V.
Sechovský
, and
J.
Pospíšil
,
J. Phys. Chem. Lett.
13
(
48
),
11095
11104
(
2022
).
29.
T.
Marchandier
,
N.
Dubouis
,
F.
Fauth
,
M.
Avdeev
,
A.
Grimaud
,
J.-M.
Tarascon
, and
G.
Rousse
,
Phys. Rev. B
104
(
1
),
014105
(
2021
).

Supplementary Material

You do not currently have access to this content.