To accommodate societal electrification and decarbonization, renewable energy resources continue to expand their share of the global energy market. The intermittency of renewable energy technologies as well as the high power density of modern electrified platforms necessitates the need for both efficient thermal management and high-density thermal storage. Phase change materials are a promising passive thermal energy storage solution. However, difficulties with efficient system implementation stemming from the inherent melt pool formation hinder their potential. We develop an innovative strategy, termed dynamic phase change material “dynPCM,” to address this thermal transport issue by ensuring a constant, thin, melt layer. We analyze the fundamental limits of dynPCMs, characterize the peak achievable heat flux and energy/power densities, estimate the power consumption of dynPCM systems, and investigate the fundamental physics which govern dynPCM behavior. We show that dynPCM can eliminate the classical trade-off seen between energy density and power density and achieve ultrahigh heat fluxes, ∼105 W/cm2, with heat flux-to-required power ratios as high as ∼107. We also demonstrate achievable power densities as high as ∼100 W/cm3 at energy densities as high as ∼10 kJ/cm3. Throughout this work, we develop a methodology to evaluate the operating limits, enabling adaptation of the dynPCM system concept to a variety of applications and industries.

1.
G.
Luderer
,
S.
Madeddu
,
L.
Merfort
et al, “
Impact of declining renewable energy costs on electrification in low-emission scenarios
,”
Nat. Energy
7
,
32
42
(
2021
).
2.
N.
Pallo
,
T.
Foulkes
,
T.
Modeer
,
S.
Coday
, and
R.
Pilawa-Podgurski
, “
Power-dense multilevel inverter module using interleaved GaN-based phases for electric aircraft propulsion
,” in
IEEE Applied Power Electronics Conference and Exposition (APEC)
(
IEEE
,
2018
).
3.
J. G.
Kassakian
and
T. M.
Jahns
, “
Evolving and emerging applications of power electronics in systems
,”
IEEE J. Emerging Sel. Top. Power Electron.
1
,
47
58
(
2013
).
4.
K. M.
Tan
,
T. S.
Babu
,
V. K.
Ramachandaramurthy
et al, “
Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration
,”
J. Energy Storage
39
,
102591
(
2021
).
5.
A.
Castillo
and
D. F.
Gayme
, “
Grid-scale energy storage applications in renewable energy integration: A survey
,”
Energy Convers. Manage.
87
,
885
894
(
2014
).
6.
A. A.
Kebede
,
T.
Kalogiannis
,
J.
Van Mierlo
, and
M.
Berecibar
, “
A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration
,”
Renewable Sustainable Energy Rev.
159
,
112213
(
2022
).
7.
J. A.
Casey
,
M.
Fukurai
,
D.
Hernández
,
S.
Balsari
, and
M. V.
Kiang
, “
Power outages and community health: A narrative review
,”
Curr. Environ. Health Rep.
7
,
371
383
(
2020
).
8.
Z.
Ling
,
Z.
Zhang
,
G.
Shi
et al, “
Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules
,”
Renewable Sustainable Energy Rev.
31
,
427
438
(
2014
).
9.
M. M.
Farid
,
A. M.
Khudhair
,
S. A. K.
Razack
, and
S.
Al-Hallaj
, “
A review on phase change energy storage: Materials and applications
,”
Energy Convers. Manage.
45
,
1597
1615
(
2004
).
10.
J.
Woods
,
A.
Mahvi
,
A.
Goyal
et al, “
Rate capability and Ragone plots for phase change thermal energy storage
,”
Nat. Energy
6
(
3
),
295
302
(
2021
).
11.
T.
Hirata
,
Y.
Makino
, and
Y.
Kaneko
, “
Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule
,”
Int. J. Heat Mass Transfer
34
,
3097
3106
(
1991
).
12.
F. E.
Moore
and
Y.
Bayazitoglu
, “
Melting within a spherical enclosure
,”
J. Heat Transfer
104
,
19
23
(
1982
).
13.
T.
Rozenfeld
,
Y.
Kozak
,
R.
Hayat
, and
G.
Ziskind
, “
Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: Demonstration, modeling and application to thermal storage
,”
Int. J. Heat Mass Transfer
86
,
465
477
(
2015
).
14.
N.
Hu
,
Z. R.
Li
,
Z. W.
Xu
, and
L. W.
Fan
, “
Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting
,”
Renewable Sustainable Energy Rev.
155
,
111918
(
2022
).
15.
T.
Shockner
,
A.
Nir
,
D.
Portnikov
,
Y.
Kozak
, and
G.
Ziskind
, “
Experimental study of close-contact melting in a cylindrical enclosure
,” in
International Heat Transfer Conference 16, 10–15 August 2018
(
Begell House Inc
.,
2018
), pp.
4359
4366
.
16.
T.
Shockner
and
G.
Ziskind
, “
Experimental and numerical evaluation of phase-change material performance in a vertical cylindrical capsule for thermal energy storage
,”
Appl. Therm. Eng.
219
,
119519
(
2023
).
17.
W.
Fu
,
X.
Yan
,
Y.
Gurumukhi
et al, “
High power and energy density dynamic phase change materials using pressure-enhanced close contact melting
,”
Nat. Energy
7
,
270
(
2022
).
18.
H. M.
Ali
,
M. J.
Ashraf
,
A.
Giovannelli
et al, “
Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs
,”
Int. J. Heat Mass Transfer
123
,
272
284
(
2018
).
19.
N. R.
Jankowski
and
F. P.
McCluskey
, “
A review of phase change materials for vehicle component thermal buffering
,”
Appl. Energy
113
,
1525
1561
(
2014
).
20.
A.
Wypych
, “
Other chemical compounds
,” in
Databook of Antiblocking, Release, and Slip Additives
(
Elsevier
,
2014
), pp.
250
325
.
21.
G. H.
Wagner
and
W. H. G.
Gitzen
,
J. Chem. Educ.
29
,
162
167
(
1952
).
22.
X. H.
Yang
,
S. C.
Tan
, and
J.
Liu
, “
Numerical investigation of the phase change process of low melting point metal
,”
Int. J. Heat Mass Transfer
100
,
899
907
(
2016
).
23.
Y.
Lv
,
W.
Zhou
, and
W.
Jin
, “
Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material
,”
Energy Build.
111
,
242
252
(
2016
).
24.
W. Y.
Tawfik
and
A. S.
Teja
, “
The densities of polyethylene glycols
,”
Chem. Eng. Sci.
44
,
921
923
(
1989
).
25.
M.
Alipanah
and
X.
Li
, “
Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams
,”
Int. J. Heat Mass Transfer
102
,
1159
1168
(
2016
).
26.
R. C.
Weast
and
J.
Grasselli
,
CRC Handbook of Data on Organic Compounds
(
CRC-Press
,
1985
).
27.
Y.
Ito
,
K.
Minami
, and
A.
Nagashima
, “
Viscosity of liquid lithium by an oscillating-cup viscometer in the temperature range 464-923 K
,”
Int. J. Thermophys.
10
,
173
(
1989
).
28.
D. W.
Jeppson
,
J. L.
Ballif
,
W. W.
Yuan
, and
B. E.
Chou
, “
Lithium literature review: Lithium's properties interactions
,” Report No. HEDL-TME-78-15,
1978
.
29.
J. R.
Rumble
,
CRC Handbook of Chemistry and Physics
(
Taylor and Francis Group
,
2023
).
30.
M. J.
Assael
,
A. E.
Kalyva
,
K. D.
Antoniadis
et al, “
Reference data for the density and viscosity of liquid copper and liquid tin
,”
J. Phys. Chem. Ref. Data
39
,
033105
(
2010
).
31.
T.
Dubberstein
,
M.
Schürmann
,
H.
Chaves
,
H. P.
Heller
, and
C. G.
Aneziris
, “
A novel vibrating finger viscometer for high-temperature measurements in liquid metals and alloys
,”
Int. J. Thermophys.
37
,
100
(
2016
).
32.
PubChem, see https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-nitrate#section=Odor for “Sodium Nitrate|NaNO3|CID 24268.”
33.
A.
Lipchitz
,
G.
Harvel
, and
T.
Sunagawa
, “
Thermophysical characteristics of liquid metal In-Bi-Sn eutectic (Field's metal) as a similarity coolant
,”
J. Nucl. Eng. Radiat. Sci.
8
,
031301
(
2022
).
34.
T.
Yang
,
J. G.
Kang
,
P. B.
Weisensee
et al, “
A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy
,”
Appl. Phys. Lett.
116
,
071901
(
2020
).
35.
P. J.
Shamberger
and
N. M.
Bruno
, “
Review of metallic phase change materials for high heat flux transient thermal management applications
,”
Appl. Energy
258
,
113955
(
2020
).
36.
M.
Edalatpour
,
D. T.
Cusumano
,
S.
Nath
, and
J. B.
Boreyko
, “
Three-phase Leidenfrost effect
,”
Phys. Rev. Fluids
7
,
014004
(
2022
).
37.
Q.
Wang
,
B.
Jiang
,
Q. F.
Xue
et al, “
Experimental investigation on EV battery cooling and heating by heat pipes
,”
Appl. Therm. Eng.
88
,
54
60
(
2015
).
38.
T.
Foulkes
,
J.
Oh
,
P.
Birbarah
et al, “
Active hot spot cooling of GaN transistors with electric field enhanced jumping droplet condensation
,” in
IEEE Applied Power Electronics Conference and Exposition-APEC
(
IEEE
,
2017
), pp.
912
918
.
39.
T.
Gebrael
,
J.
Li
,
A. R.
Gamboa
et al, “
High-efficiency cooling via the monolithic integration of copper on electronic devices
,”
Nat. Electron.
5
,
394
402
(
2022
).
40.
M. J.
Hoque
,
A.
Gunay
,
A.
Stillwell
et al, “
Modular heat sinks for enhanced thermal management of electronics
,”
J. Electron. Packag.
143
,
20903
20904
(
2021
).
41.
M.
Liu
,
W.
Saman
, and
F.
Bruno
, “
Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
,”
Renewable Sustainable Energy Rev.
16
,
2118
2132
(
2012
).
42.
A.
Boretti
and
S.
Castelletto
, “
High-temperature molten-salt thermal energy storage and advanced-ultra-supercritical power cycles
,”
J. Energy Storage
42
,
103143
(
2021
).
43.
M.
Vaka
,
R.
Walvekar
,
P.
Jagadish
et al, “
High-temperature molten salts optimisation using mixture design for energy storage application
,”
J. Energy Storage
32
,
101981
(
2020
).
44.
H.
Ji
,
J.
Wu
,
Z.
Cai
et al, “
Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
,”
Nat. Energy
5
,
213
221
(
2020
).
45.
T.
Bauer
,
N.
Pfleger
,
D.
Laing
et al, “
High-temperature molten salts for solar power application
,” in
Molten Salts Chemistry
(
Elsevier
,
2013
), pp.
415
438
.
47.
R. S.
Bunker
and
D. E.
Metzger
, “
Local heat transfer in internally cooled turbine airfoil leading edge regions: Part I—Impingement cooling without film coolant extraction
,”
J. Turbomach.
112
,
451
458
(
1990
).
48.
M. E.
Taslim
,
L.
Setayeshgar
, and
S. D.
Spring
, “
An experimental evaluation of advanced leading edge impingement cooling concepts
,”
J. Turbomach.
123
,
147
153
(
2001
).
49.
C.
Nadjahi
,
H.
Louahlia
, and
S.
Lemasson
, “
A review of thermal management and innovative cooling strategies for data center
,”
Sustainable Comput. Inf. Syst.
19
,
14
28
(
2018
).

Supplementary Material

You do not currently have access to this content.