Thermoelectric power generation is a promising technology that can directly convert thermal energy into electrical energy and is expected to be applied as power supplies for low-power electronic devices, such as sensors. In particular, planar-type devices fabricated based on lithography processes not only enable significant device miniaturization and lower cost but also take advantage of materials with smaller dimensions, such as thin films and nanowires, which have attracted much attention in recent years. Silicon germanium (SiGe) is a promising thermoelectric material due to its relatively high power factor, low thermal conductivity, and compatibility with standard top-down fabrication process. We design and fabricate a planar-type thermoelectric generator with a double cavity structure using a 240 nm thick Si 0.8 Ge 0.2 thin film and report its performance improvement. When the temperature difference is applied to the device, the measured power density of 100  μ Wcm 2 was achieved at Δ T = 15 K, namely, the performance normalized by the applied temperature was 0.43  μ Wcm 2 K 2. Finally, the dependence of the device performance on the SiGe film thickness is discussed. The results from our simulation show that a maximum performance of 1.75  μ Wcm 2 K 2 can be achieved by the current device structure, indicating the potential for future applications as thermoelectric energy harvesters.

1.
Q.
Zhang
,
K.
Deng
,
L.
Wilkens
,
H.
Reith
, and
K.
Nielsch
, “
Micro-thermoelectric devices
,”
Nat. Electron.
5
,
333
347
(
2022
).
2.
T.
Hendricks
,
T.
Caillat
, and
T.
Mori
, “
Keynote review of latest advances in thermoelectric generation materials, devices, and technologies 2022
,”
Energies
15
,
7307
(
2022
).
3.
M.
Zebarjadi
,
K.
Esfarjani
,
M.
Dresselhaus
,
Z.
Ren
, and
G.
Chen
, “
Perspectives on thermoelectrics: From fundamentals to device applications
,”
Energy Environ. Sci.
5
,
5147
5162
(
2012
).
4.
L. D.
Hicks
and
M. S.
Dresselhaus
, “
Effect of quantum-well structures on the thermoelectric figure of merit
,”
Phys. Rev. B
47
,
12727
(
1993
).
5.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
, “
Enhanced thermoelectric performance of rough silicon nanowires
,”
Nature
451
,
163
167
(
2008
).
6.
W.
Park
,
D. D.
Shin
,
S. J.
Kim
,
J. S.
Katz
,
J.
Park
,
C. H.
Ahn
,
T.
Kodama
,
M.
Asheghi
,
T. W.
Kenny
, and
K. E.
Goodson
, “
Phonon conduction in silicon nanobeams
,”
Appl. Phys. Lett.
110
,
213102
(
2017
).
7.
L.
Yang
,
Y.
Yang
,
Q.
Zhang
,
Y.
Zhang
,
Y.
Jiang
,
Z.
Guan
,
M.
Gerboth
,
J.
Yang
,
Y.
Chen
,
D. G.
Walker
et al, “
Thermal conductivity of individual silicon nanoribbons
,”
Nanoscale
8
,
17895
17901
(
2016
).
8.
O.
Bourgeois
,
D.
Tainoff
,
A.
Tavakoli
,
Y.
Liu
,
C.
Blanc
,
M.
Boukhari
,
A.
Barski
, and
E.
Hadji
, “
Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity
,”
C. R. Phys.
17
,
1154
1160
(
2016
).
9.
J.
Stoetzel
,
T.
Schneider
,
M. M.
Mueller
,
H.-J.
Kleebe
,
H.
Wiggers
,
G.
Schierning
, and
R.
Schmechel
, “
Microstructure and thermoelectric properties of Si WSi 2 nanocomposites
,”
Acta Mater.
125
,
321
326
(
2017
).
10.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
, “
New directions for low-dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
1053
(
2007
).
11.
S.
Yamasaka
,
Y.
Nakamura
,
T.
Ueda
,
S.
Takeuchi
, and
A.
Sakai
, “
Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials
,”
Sci. Rep.
5
,
14490
(
2015
).
12.
K.
Kurosaki
,
A.
Yusufu
,
Y.
Miyazaki
,
Y.
Ohishi
,
H.
Muta
, and
S.
Yamanaka
, “
Enhanced thermoelectric properties of silicon via nanostructuring
,”
Mater. Trans.
57
,
1018
1021
(
2016
).
13.
L.
Yang
and
A. J.
Minnich
, “
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
,”
Sci. Rep.
7
,
44254
(
2017
).
14.
G.
Joshi
,
H.
Lee
,
Y.
Lan
,
X.
Wang
,
G.
Zhu
,
D.
Wang
,
R. W.
Gould
,
D. C.
Cuff
,
M. Y.
Tang
,
M. S.
Dresselhaus
et al, “
Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys
,”
Nano Lett.
8
,
4670
4674
(
2008
).
15.
J.
Tang
,
H.-T.
Wang
,
D. H.
Lee
,
M.
Fardy
,
Z.
Huo
,
T. P.
Russell
, and
P.
Yang
, “
Holey silicon as an efficient thermoelectric material
,”
Nano Lett.
10
,
4279
4283
(
2010
).
16.
J.-H.
Lee
,
G. A.
Galli
, and
J. C.
Grossman
, “
Nanoporous Si as an efficient thermoelectric material
,”
Nano Lett.
8
,
3750
3754
(
2008
).
17.
J.
Lim
,
H.-T.
Wang
,
J.
Tang
,
S. C.
Andrews
,
H.
So
,
J.
Lee
,
D. H.
Lee
,
T. P.
Russell
, and
P.
Yang
, “
Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon
,”
ACS Nano
10
,
124
132
(
2016
).
18.
M.
Nomura
,
Y.
Kage
,
D.
Müller
,
D.
Moser
, and
O.
Paul
, “
Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications
,”
Appl. Phys. Lett.
106
,
223106
(
2015
).
19.
R.
Anufriev
,
R.
Yanagisawa
, and
M.
Nomura
, “
Aluminium nanopillars reduce thermal conductivity of silicon nanobeams
,”
Nanoscale
9
,
15083
15088
(
2017
).
20.
M.
Nomura
,
J.
Shiomi
,
T.
Shiga
, and
R.
Anufriev
, “
Thermal phonon engineering by tailored nanostructures
,”
Jpn. J. Appl. Phys., Part 1
57
,
080101
(
2018
).
21.
R.
Anufriev
,
J.
Maire
, and
M.
Nomura
, “
Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures
,”
Phys. Rev. B
93
,
045411
(
2016
).
22.
S.
Koike
,
R.
Yanagisawa
,
M.
Kurosawa
,
R.
Jha
,
N.
Tsujii
,
T.
Mori
, and
M.
Nomura
, “
Effect of nanostructuring on thermoelectric performance of SiGe thin films
,”
Jpn. J. Appl. Phys., Part 1
62
,
095001
(
2023
).
23.
M.
Nomura
,
R.
Anufriev
,
Z.
Zhang
,
J.
Maire
,
Y.
Guo
,
R.
Yanagisawa
, and
S.
Volz
, “
Review of thermal transport in phononic crystals
,”
Mater. Today Phys.
22
,
100613
(
2022
).
24.
S.
Yang
and
L.
Chung
, “
A thermoelectric energy generator with double cavity design by single polysilicon layer in standard CMOS process
,”
IEEE Sens. J.
21
,
23799
23805
(
2021
).
25.
S.
Yang
and
S.
Wang
, “
Development of a thermoelectric energy generator with double cavity by standard CMOS process
,”
IEEE Sens. J.
21
,
250
256
(
2021
).
26.
M.
Strasser
,
R.
Aigner
,
C.
Lauterbach
,
T.
Sturm
,
M.
Franosch
, and
G.
Wachutka
, “
Micromachined CMOS thermoelectric generators as on-chip power supply
,”
Sens. Actuators A
114
,
362
370
(
2004
).
27.
J.
Xie
,
C.
Lee
,
M.-F.
Wang
,
Y.
Liu
, and
H.
Feng
, “
Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators
,”
J. Micromech. Microeng.
19
,
125029
(
2009
).
28.
S.
Yang
,
M.
Cong
, and
T.
Lee
, “
Application of quantum well-like thermocouple to thermoelectric energy harvester by BiCMOS process
,”
Sens. Actuators A
166
,
117
124
(
2011
).
29.
S.
Yang
,
J.
Wang
, and
M.
Chen
, “
On the improved performance of thermoelectric generators with low dimensional polysilicon-germanium thermocouples by BiCMOS process
,”
Sens. Actuators A
306
,
111924
(
2020
).
30.
J.
Su
,
V.
Leonov
,
M.
Goedbloed
,
Y.
van Andel
,
M.
De Nooijer
,
R.
Elfrink
,
Z.
Wang
, and
R.
Vullers
, “
A batch process micromachined thermoelectric energy harvester: Fabrication and characterization
,”
J. Micromech. Microeng.
20
,
104005
(
2010
).
31.
L.
Fonseca
,
I.
Donmez-Noyan
,
M.
Dolcet
,
D.
Estrada-Wiese
,
J.
Santander
,
M.
Salleras
,
G.
Gadea
,
M.
Pacios
,
J.-M.
Sojo
,
A.
Morata
et al, “
Transitioning from Si to SiGe nanowires as thermoelectric material in silicon-based microgenerators
,”
Nanomaterials
11
,
517
(
2021
).
32.
M.
Tomita
,
S.
Oba
,
Y.
Himeda
,
R.
Yamato
,
K.
Shima
,
T.
Kumada
,
M.
Xu
,
H.
Takezawa
,
K.
Mesaki
,
K.
Tsuda
et al, “
Modeling, simulation, fabrication, and characterization of a 10 μ W / cm 2 class Si-nanowire thermoelectric generator for IoT applications
,”
IEEE Trans. Electron Devices
65
,
5180
5188
(
2018
).
33.
R.
Yanagisawa
,
S.
Koike
,
T.
Nawae
,
N.
Tsujii
,
Y.
Wang
,
T.
Mori
,
P.
Ruther
,
O.
Paul
,
Y.
Yoshida
,
J.
Harashima
et al, “
Planar-type silicon thermoelectric generator with phononic nanostructures for 100 μ W energy harvesting
,” arXiv:2307.11382 (
2023
).
34.
A.
George
,
R.
Yanagisawa
,
R.
Anufriev
,
J.
He
,
N.
Yoshie
,
N.
Tsujii
,
Q.
Guo
,
T.
Mori
,
S.
Volz
, and
M.
Nomura
, “
Thermoelectric enhancement of silicon membranes by ultrathin amorphous films
,”
ACS Appl. Mater. Interfaces
11
,
12027
12031
(
2019
).
35.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
, “
Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites
,”
Nano Lett.
12
,
2077
2082
(
2012
).
36.
M.
Takashiri
,
T.
Borca-Tasciuc
,
A.
Jacquot
,
K.
Miyazaki
, and
G.
Chen
, “
Structure and thermoelectric properties of boron doped nanocrystalline Si 0.8 Ge 0.2 thin film
,”
J. Appl. Phys.
100
,
054315
(
2006
).
37.
J.
Lu
,
R.
Guo
,
W.
Dai
, and
B.
Huang
, “
Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries
,”
Nanoscale
7
,
7331
7339
(
2015
).
38.
S.
Koike
,
R.
Yanagisawa
,
M.
Kurosawa
, and
M.
Nomura
, “
Design of a planar-type uni-leg SiGe thermoelectric generator
,”
Jpn. J. Appl. Phys., Part 1
59
,
074003
(
2020
).
You do not currently have access to this content.