Due to high theoretical capacity, low cost, and high energy density, sodium-sulfur (Na-S) batteries are attractive for next-generation grid-level storage systems. However, the polysulfide shuttle leads to a rapid capacity loss in sodium-sulfur batteries with elemental sulfur as the cathode material. Most previous studies have focused on nanoengineering methods for creating stable Na anodes and S cathodes. A proven strategy to mitigate the shuttle effect is to covalently bond elemental sulfur to a polymeric backbone and use it as the active ingredient instead of elemental sulfur. In this regard, we synthesized sulfurized polyacrylonitrile (SPAN) cathodes. In addition to the electrodes, electrolyte selection is crucial for sodium sulfur batteries with long cycle life, high energy densities, and rate capabilities. Thus, we explored various electrolyte compositions; specifically organic solvents such as propylene carbonate (PC), dioxolane (DOL), dimethoxyethane, and diglyme (DIG) were mixed in different proportions to create electrolyte solvents with both ethers and carbonates to promote the formation of bilateral solid electrolyte interphase (SEI). This bilateral SEI strategy has been employed to prevent polysulfide shuttle and dendrite growth in lithium-sulfur batteries. Sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was chosen as the electrolyte salt. The prepared coin cells were tested for rate capability and capacity retention, and the results have been analyzed. High initial discharge capacity of ∼740 mAh g−1 with ∼66% capacity retention over 100 cycles was observed for 0.8M NaTFSI in PC50DOL50 (v/v). The cell with 0.8M NaTFSI in PC50DIG50 has exhibited strong capacity retention of 74.60% with excellent Coulombic efficiency of 99%. Molecular dynamics (MD) simulations were carried out to further understand these results.

1.
D.
Kumar
,
S. B.
Kuhar
, and
D. K.
Kanchan
, “
Room temperature sodium-sulfur batteries as emerging energy source
,”
J. Energy Storage
18
,
133
148
(
2018
).
2.
Z.
Ma
,
L.
Tao
,
D.
Liu
,
Z.
Li
,
Y.
Zhang
,
Z.
Liu
,
H.
Liu
,
R.
Chen
,
J.
Huo
, and
S.
Wang
, “
Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries
,”
J. Mater. Chem. A
5
,
9412
9417
(
2017
).
3.
L.
Timilsina
,
P. R.
Badr
,
P. H.
Hoang
,
G.
Ozkan
,
B.
Papari
, and
C. S.
Edrington
, “
Battery degradation in electric and hybrid electric vehicles: A survey study
,”
IEEE Access
11
,
42431
42462
(
2023
).
4.
I.
Staffell
and
M.
Rustomji
, “
Maximising the value of electricity storage
,”
J. Energy Storage
8
,
212
225
(
2016
).
5.
Z. W.
Seh
,
J.
Sun
,
Y.
Sun
, and
Y.
Cui
, “
A highly reversible room-temperature sodium metal anode
,”
ACS Cent. Sci.
1
,
449
455
(
2015
).
6.
L. F.
Arenas
,
C.
Ponce de León
, and
F. C.
Walsh
, “
Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage
,”
J. Energy Storage
11
,
119
153
(
2017
).
7.
J.
Zhu
,
J.
Zou
,
H.
Cheng
,
Y.
Gu
, and
Z.
Lu
, “
High energy batteries based on sulfur cathode
,”
Green Energy Environ.
4
,
345
359
(
2019
).
8.
H.
Yang
,
H.
Xu
,
M.
Li
,
L.
Zhang
,
Y.
Huang
, and
X.
Hu
, “
Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors
,”
ACS Appl. Mater. Interfaces
8
,
1774
1779
(
2016
).
9.
Q.
Liu
,
Z.
Hu
,
M.
Chen
,
C.
Zou
,
H.
Jin
,
S.
Wang
,
S. L.
Chou
,
Y.
Liu
, and
S. X.
Dou
, “
The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs
,”
Adv. Funct. Mater.
30
,
1909530
(
2020
).
10.
H.
Nagata
and
Y.
Chikusa
, “
An all-solid-state sodium-sulfur battery operating at room temperature using a high-sulfur-content positive composite electrode
,”
Chem. Lett.
43
,
1333
1334
(
2014
).
11.
D.
Kumar
,
S. K.
Rajouria
,
S. B.
Kuhar
, and
D. K.
Kanchan
, “
Progress and prospects of sodium-sulfur batteries: A review
,”
Solid State Ion
312
,
8
16
(
2017
).
12.
G.
Nikiforidis
,
M. C. M.
Van de Sanden
, and
M. N.
Tsampas
, “
High and intermediate temperature sodium-sulfur batteries for energy storage: Development, challenges and perspectives
,”
RSC Adv.
9
,
5649
5673
(
2019
).
13.
L.
Li
,
Y.
Deng
, and
G.
Chen
, “
Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries
,”
J. Energy Chem.
50
,
154
177
(
2020
).
14.
X.
Yu
and
A.
Manthiram
, “
Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes
,”
Acc. Chem. Res.
50
,
2653
2660
(
2017
).
15.
X.
Yu
and
A.
Manthiram
, “
Ambient-temperature energy storage with polyvalent metal–sulfur chemistry
,”
Small Methods
1
,
1700217
(
2017
).
16.
P.
Adelhelm
,
P.
Hartmann
,
C. L.
Bender
,
M.
Busche
,
C.
Eufinger
,
J.
Janek
, and
J.
Beilstein
,
Nanotechnol.
6
,
1016
1055
(
2015
).
17.
J.
Ni
,
Y.
Liu
, and
S.
Zhu
, “
Unconventional designs for functional sodium-sulfur batteries
,”
Energy Environ. Mater.
6
,
e12589
(
2023
).
18.
Y. X.
Wang
,
B.
Zhang
,
W.
Lai
,
Y.
Xu
,
S. L.
Chou
,
H. K.
Liu
, and
S. X.
Dou
, “
Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry
,”
Adv. Energy Mater.
7
,
1602829
(
2017
).
19.
Q.
Pang
,
X.
Liang
,
C. Y.
Kwok
, and
L. F.
Nazar
, “
Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes
,”
Nat. Energy
1
,
16132
(
2016
).
20.
Z.
Yan
,
L.
Zhao
,
Y.
Wang
,
Z.
Zhu
, and
S.-L
Chou
, “
The future for room-temperature sodium–sulfur batteries: From persisting issues to promising solutions and practical applications
,”
Adv. Func. Mater.
32
(
36
),
2205622
(
2022
).
21.
A.
Manthiram
and
X.
Yu
, “
Ambient temperature sodium-sulfur batteries
,”
Small
11
,
2108
2114
(
2015
).
22.
B. W.
Zhang
,
Y. D.
Liu
,
Y. X.
Wang
,
L.
Zhang
,
M. Z.
Chen
,
W. H.
Lai
,
S. L.
Chou
,
H. K.
Liu
, and
S. X.
Dou
, “
In situ grown S nanosheets on Cu foam: An ultrahigh electroactive cathode for room-temperature Na-S batteries
,”
ACS Appl. Mater Interfaces
9
,
24446
24450
(
2017
).
23.
L.
Fan
,
R.
Ma
,
Y.
Yang
,
S.
Chen
, and
B.
Lu
, “
Covalent sulfur for advanced room temperature sodium-sulfur batteries
,”
Nano Energy
28
,
304
310
(
2016
).
24.
S.
Wei
,
S.
Xu
,
A.
Agrawral
,
S.
Choudhury
,
Y.
Lu
,
Z.
Tu
,
L.
Ma
, and
L. A.
Archer
, “
A stable room-temperature sodium-sulfur battery
,”
Nat. Commun.
7
,
11722
(
2016
).
25.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
,
928
(
2011
).
26.
Y. J.
Lei
,
H. W.
Liu
,
Z.
Yang
,
L. F.
Zhao
,
W. H.
Lai
,
M.
Chen
,
H.
Liu
,
S.
Dou
, and
Y. X.
Wang
, “
A review on the status and challenges of cathodes in room-temperature Na-S batteries
,”
Adv. Funct. Mater.
33
,
2212600
(
2023
).
27.
L.
Wang
,
T.
Wang
,
L.
Peng
,
Y.
Wang
,
M.
Zhang
,
J.
Zhou
,
M.
Chen
,
J.
Cao
,
H.
Fei
,
X.
Duan
,
J.
Zhu
, and
X.
Duan
, “
The promises, challenges and pathways to room-temperature sodium-sulfur batteries
,”
Natl. Sci. Rev.
9
,
nwab050
(
2022
).
28.
J.
Wang
,
J.
Yang
,
Y.
Nuli
, and
R.
Holze
, “
Room temperature Na/S batteries with sulfur composite cathode materials
,”
Electrochem. Commun.
9
,
31
34
(
2007
).
29.
S.
Ma
,
P.
Zuo
,
H.
Zhang
,
Z.
Yu
,
C.
Cui
,
M.
He
, and
G.
Yin
, “
Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries
,”
Chem. Commun.
55
,
5267
5270
(
2019
).
30.
L.
Fan
,
S.
Chen
,
J.
Zhu
,
R.
Ma
,
S.
Li
,
R.
Podila
,
A. M.
Rao
,
G.
Yang
,
C.
Wang
,
Q.
Liu
,
Z.
Xu
,
L.
Yuan
,
Y.
Huang
, and
B.
Lu
, “
Simultaneous suppression of the dendrite formation and shuttle effect in a lithium–sulfur battery by bilateral solid electrolyte interface
,”
Adv. Sci.
5
,
1700934
(
2018
).
31.
APS
, in
APS March Meeting 2024 - Event - Identification of the Key Parameters for the Organic Electrolytes Selection for Lithium-Sulfur Batteries
(Bulletin of the American Physical Society,
2024
).
32.
J.
Self
,
K. D.
Fong
, and
K. A.
Persson
, “
Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes
,”
ACS Energy Lett.
4
,
2843
2849
(
2019
).
33.
J.
Ming
,
Z.
Cao
,
Q.
Li
,
W.
Wahyudi
,
W.
Wang
,
L.
Cavallo
,
K.-J.
Park
,
Y.-K.
Sun
, and
H. N.
Alshareef
, “
Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries
,”
ACS Energy Lett.
4
,
1584
1593
(
2019
).
34.
L.
Xing
,
X.
Zheng
,
M.
Schroeder
,
J.
Alvarado
,
A.
von Wald Cresce
,
K.
Xu
,
Q.
Li
, and
W.
Li
, “
Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries
,”
Acc. Chem. Res.
51
,
282
289
(
2018
).
35.
Q.
Li
,
D.
Lu
,
J.
Zheng
,
S.
Jiao
,
L.
Luo
,
C.-M.
Wang
,
K.
Xu
,
J.-G.
Zhang
, and
W.
Xu
, “
Li+-desolvation dictating lithium-ion battery's low-temperature performances
,”
ACS Appl. Mater Interfaces
9
,
42761
42768
(
2017
).
36.
K.
Xu
,
A.
von Cresce
, and
U.
Lee
, “
Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface
,”
Langmuir
26
,
11538
11543
(
2010
).
37.
D.
Hubble
,
D. E.
Brown
,
Y.
Zhao
,
C.
Fang
,
J.
Lau
,
B. D.
McCloskey
, and
G.
Liu
, “
Liquid electrolyte development for low-temperature lithium-ion batteries
,”
Energy Environ Sci.
15
,
550
578
(
2022
).
38.
T.
Hou
,
K. D.
Fong
,
J.
Wang
, and
K. A.
Persson
, “
The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries
,”
Chem. Sci.
12
,
14740
14751
(
2021
).
39.
C.-C.
Su
,
M.
He
,
R.
Amine
,
T.
Rojas
,
L.
Cheng
,
A. T.
Ngo
, and
K.
Amine
, “
Solvating power series of electrolyte solvents for lithium batteries
,”
Energy Environ. Sci.
12
,
1249
1254
(
2019
).
40.
A.
Ponrouch
,
E.
Marchante
,
M.
Courty
,
J. M.
Tarascon
, and
M. R.
Palacín
, “
In search of an optimized electrolyte for Na-ion batteries
,”
Energy Environ. Sci.
5
,
8572
8583
(
2012
).
41.
Z. A. H.
Goodwin
,
M.
McEldrew
,
B.
Kozinsky
, and
M. Z.
Bazant
, “
Theory of cation solvation and ionic association in nonaqueous solvent mixtures
,”
PRX Energy
2
,
013007
(
2023
).
42.
S. C.
Jung
,
Y. J.
Kang
, and
Y. K.
Han
, “
Origin of excellent rate and cycle performance of Na+-solvent cointercalated graphite vs. poor performance of Li+-solvent case
,”
Nano Energy
34
,
456
462
(
2017
).

Supplementary Material

You do not currently have access to this content.