A number of memristive devices, mainly ReRAMs, have been reported to exhibit a unique non-zero crossing hysteresis attributed to the interplay of resistive and not yet fully understood “capacitive” and “inductive” effects. This work exploits a kinetic simulation model based on a stochastic cloud-in-a-cell method to capture these effects. The model, applied to Au/BiFeO3/Pt/Ti interface-type devices, incorporates vacancy transport and capacitive contributions. The resulting nonlinear response, characterized by hysteresis, is analyzed in detail, providing an in-depth physical understanding of the virtual effects. Capacitive effects are modeled across different layers, revealing their significant role in shaping the non-zero crossing hysteresis behavior. Results from kinetic simulations demonstrate the impact of frequency-dependent impedance on the non-zero crossing phenomenon. This model provides insight into the effects of various device material properties on the non-zero crossing point, such as Schottky barrier height, device area, and oxide layer.

1.
M.-K.
Song
,
J.-H.
Kang
,
X.
Zhang
,
W.
Ji
,
A.
Ascoli
,
I.
Messaris
,
A. S.
Demirkol
,
B.
Dong
,
S.
Aggarwal
,
W.
Wan
,
S.-M.
Hong
,
S. G.
Cardwell
,
I.
Boybat
,
J.-S.
Seo
,
J.-S.
Lee
,
M.
Lanza
,
H.
Yeon
,
M.
Onen
,
J.
Li
,
B.
Yildiz
,
J. A.
del Alamo
,
S.
Kim
,
S.
Choi
,
G.
Milano
,
C.
Ricciardi
,
L.
Alff
,
Y.
Chai
,
Z.
Wang
,
H.
Bhaskaran
,
M. C.
Hersam
,
D.
Strukov
,
H.-S. P.
Wong
,
I.
Valov
,
B.
Gao
,
H.
Wu
,
R.
Tetzlaff
,
A.
Sebastian
,
W.
Lu
,
L.
Chua
,
J. J.
Yang
, and
J.
Kim
, “
Recent advances and future prospects for memristive materials, devices, and systems
,”
ACS Nano
17
,
11994
12039
(
2023
).
2.
L.
Chua
, “
Resistance switching memories are memristors
,”
Appl. Phys. A
102
,
765
783
(
2011
).
3.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
4.
D.
Ielmini
and
R.
Waser
,
Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
(
John Wiley & Sons, Ltd
,
2016
).
5.
L.
Chua
, “
If it's pinched it's a memristor
,”
Semicond. Sci. Technol.
29
,
104001
(
2014
).
6.
B.
Sun
,
Y.
Chen
,
M.
Xiao
,
G.
Zhou
,
S.
Ranjan
,
W.
Hou
,
X.
Zhu
,
Y.
Zhao
,
S. A.
Redfern
, and
Y. N.
Zhou
, “
A unified capacitive-coupled memristive model for the nonpinched current–voltage hysteresis loop
,”
Nano Lett.
19
,
6461
6465
(
2019
).
7.
I.
Salaoru
,
Q.
Li
,
A.
Khiat
, and
T.
Prodromakis
, “
Coexistence of memory resistance and memory capacitance in TiO2 solid-state devices
,”
Nanoscale Res. Lett.
9
,
552
(
2014
).
8.
N.
Du
,
N.
Manjunath
,
Y.
Li
,
S.
Menzel
,
E.
Linn
,
R.
Waser
,
T.
You
,
D.
Bürger
,
I.
Skorupa
,
D.
Walczyk
,
C.
Walczyk
,
O. G.
Schmidt
, and
H.
Schmidt
, “
Field-driven hopping transport of oxygen vacancies in memristive oxide switches with interface-mediated resistive switching
,”
Phys. Rev. Appl.
10
,
054025
(
2018
).
9.
Y.
Xu
,
L.
Tan
,
B.
Sun
,
M.
Lei
,
Y.
Zhao
,
T.
Li
,
L.
Zheng
,
S.
Zhu
,
Y.
Zhang
, and
Y.
Zhao
, “
Memristive effect with non-zero-crossing current-voltage hysteresis behavior based on Ag doped Lophatherum gracile Brongn
,”
Curr. Appl. Phys.
20
,
545
549
(
2020
).
10.
C.
Yang
,
B.
Sun
,
G.
Zhou
,
H.
Zhao
,
S.
Zhu
,
C.
Ke
,
Y.
Zhao
, and
H.
Wang
, “
Evolution between volatile and nonvolatile resistive switching behaviors in Ag/TiOx/CeOy/F-doped SnO2 nanostructure-based memristor devices for information processing applications
,”
ACS Appl. Nano Mater.
6
,
8857
8867
(
2023
).
11.
L.
Qingjiang
,
A.
Khiat
,
I.
Salaoru
,
C.
Papavassiliou
,
X.
Hui
, and
T.
Prodromakis
, “
Memory impedance in TiO2 based metal-insulator-metal devices
,”
Sci. Rep.
4
,
4522
(
2014
).
12.
S.
Dirkmann
,
M.
Hansen
,
M.
Ziegler
,
H.
Kohlstedt
, and
T.
Mussenbrock
, “
The role of ion transport phenomena in memristive double barrier devices
,”
Sci. Rep.
6
,
35686
(
2016
).
13.
S.
Dirkmann
and
T.
Mussenbrock
, “
Resistive switching in memristive electrochemical metallization devices
,”
AIP Adv.
7
,
065006
(
2017
).
14.
T.
Gergs
,
S.
Dirkmann
, and
T.
Mussenbrock
, “
Integration of external electric fields in molecular dynamics simulation models for resistive switching devices
,”
J. Appl. Phys.
123
,
245301
(
2018
).
15.
J.
Aeschlimann
,
F.
Ducry
,
C.
Weilenmann
,
J.
Leuthold
,
A.
Emboras
, and
M.
Luisier
, “
Multiscale modeling of metal-oxide-metal conductive bridging random-access memory cells: From ab initio to finite-element calculations
,”
Phys. Rev. Appl.
19
,
024058
(
2023
).
16.
Z.
Jiang
,
Y.
Wu
,
S.
Yu
,
L.
Yang
,
K.
Song
,
Z.
Karim
, and
H.-S. P.
Wong
, “
A compact model for metal–oxide resistive random access memory with experiment verification
,”
IEEE Trans. Electron Devices
63
,
1884
1892
(
2016
).
17.
A.
Zeumault
,
S.
Alam
,
M. O.
Faruk
, and
A.
Aziz
, “
Memristor compact model with oxygen vacancy concentrations as state variables
,”
J. Appl. Phys.
131
,
124502
(
2022
).
18.
T. D.
Brown
,
S.
Kumar
, and
R. S.
Williams
, “
Physics-based compact modeling of electro-thermal memristors: Negative differential resistance, local activity, and non-local dynamical bifurcations
,”
Appl. Phys. Rev.
9
,
011308
(
2022
).
19.
M. G. A.
Mohamed
,
H.
Kim
, and
T.-W.
Cho
, “
Modeling of memristive and memcapacitive behaviors in metal-oxide junctions
,”
Sci. World J.
2015
,
910126
.
20.
M.
Berruet
,
J. C.
Pérez-Martínez
,
B.
Romero
,
C.
Gonzales
,
A. M.
Al-Mayouf
,
A.
Guerrero
, and
J.
Bisquert
, “
Physical model for the current–voltage hysteresis and impedance of halide perovskite memristors
,”
ACS Energy Lett.
7
,
1214
1222
(
2022
).
21.
S.
Yarragolla
,
N.
Du
,
T.
Hemke
,
X.
Zhao
,
Z.
Chen
,
I.
Polian
, and
T.
Mussenbrock
, “
Physics inspired compact modelling of BiFeO3 based memristors
,”
Sci. Rep.
12
,
20490
(
2022
).
22.
S.
Yarragolla
,
T.
Hemke
,
J.
Trieschmann
,
F.
Zahari
,
H.
Kohlstedt
, and
T.
Mussenbrock
, “
Stochastic behavior of an interface-based memristive device
,”
J. Appl. Phys.
131
,
134304
(
2022
).
23.
S.
Yarragolla
,
T.
Hemke
, and
T.
Mussenbrock
, “
A generic compact and stochastic model for non-filamentary analog resistive switching devices
,” in
12th International Conference on Modern Circuits and Systems Technologies (MOCAST)
,
2023
.
24.
X.
Zhao
,
S.
Menzel
,
I.
Polian
,
H.
Schmidt
, and
N.
Du
, “
Review on resistive switching devices based on multiferroic BiFeO3
,”
Nanomaterials
13
,
1325
(
2023
).
25.
T.
You
,
N.
Du
,
S.
Slesazeck
,
T.
Mikolajick
,
G.
Li
,
D.
Bürger
,
I.
Skorupa
,
H.
Stöcker
,
B.
Abendroth
,
A.
Beyer
,
K.
Volz
,
O. G.
Schmidt
, and
H.
Schmidt
, “
Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors
,”
ACS Appl. Mater. Interfaces
6
,
19758
19765
(
2014
).
26.
P. G.
Bruce
,
Solid State Electrochemistry
, Chemistry of Solid State Materials (
Cambridge University Press
,
1994
), Chap. 3.
27.
R.
Meyer
,
L.
Schloss
,
J.
Brewer
,
R.
Lambertson
,
W.
Kinney
,
J.
Sanchez
, and
D.
Rinerson
, “
Oxide dual-layer memory element for scalable non-volatile cross-point memory technology
,” in
Proceedings—9th Annual Non-Volatile Memory Technology Symposium (NVMTS)
,
2008
.
28.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons Ltd
,
2007
).
29.
M.
Grundmann
,
The Physics of Semiconductors: An Introduction Including Nanophysics and Applications
, Graduate Texts in Physics (
Springer International Publishing
,
2015
).
30.
Z. B.
Yan
and
J.-M.
Liu
, “
Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures
,”
Sci. Rep.
3
,
2482
(
2013
).
31.
J.
Osvald
, “
Back-to-back connected asymmetric Schottky diodes with series resistance as a single diode
,”
Phys. Status Solidi A
212
,
2754
2758
(
2015
).
32.
M.
Maestro-Izquierdo
,
M. B.
Gonzalez
,
F.
Campabadal
,
J.
Suñé
, and
E.
Miranda
, “
A new perspective towards the understanding of the frequency-dependent behavior of memristive devices
,”
IEEE Electron Device Lett.
42
,
565
568
(
2021
).

Supplementary Material

You do not currently have access to this content.