In this study, the resistive memory devices with Ag/TiOxNy/Pt structure and Ag/TiOxNy/Ga2O3/Pt structure are fabricated. The results showed that they exhibit typical resistive behaviors as well as excellent cycling and retention characteristics (>104 s). Especially, the double-layer device with Ga2O3 layer exhibits superior resistive behavior, which has a larger storage window (ON/OFF ratio >105), a smaller set voltage (0.17 V) and a reset voltage (−0.057 V), and lower power consumption (21.7, 0.17 μW) compared with the single-layer device. Furthermore, the Ag/TiOxNy/Ga2O3/Pt device demonstrates ultraviolet light (UV-365 nm)-dependent resistance state (RS), which is advantageous for multilevel memory cells. As the intensity of UV light increases, eight high resistance state (HRS) levels are produced. Finally, the conductive mechanism for both device structures is discussed, and it is found that the conductive filaments mechanism dominates in the low resistance state. However, for the HRS, the single-layer TiOxNy device is dominated by the space charge-limited conduction mechanism, and the double-layer TiOxNy/Ga2O3 device is dominated by the Schottky emission mechanism.

1.
K. J.
Gan
,
P. T.
Liu
,
Y. C.
Chiu
,
D. B.
Ruan
,
T. C.
Chien
, and
S. M.
Sze
, “
TAOS based Cu/TiW/IGZO/Ga2O3/Pt bilayer CBRAM for low-power display technology
,”
Surf. Coat. Technol.
354
,
169
174
(
2018
).
2.
X.
Li
,
J. G.
Yang
,
H. P.
Ma
,
Y. H.
Liu
,
Z. G.
Ji
,
W.
Huang
,
X.
Ou
,
D. W.
Zhang
, and
H. L.
Lu
, “
Atomic layer deposition of Ga2O3/ZnO composite films for high-performance forming-free resistive switching memory
,”
ACS Appl. Mater. Interfaces
12
(
27
),
30538
30547
(
2020
).
3.
W.
Li
,
J.
Wan
,
Z.
Tu
,
H.
Li
,
H.
Wu
, and
C.
Liu
, “
Optimizing endurance performance of Ga2O3 random resistive access memories by altering oxygen vacancy content
,”
Ceram. Int.
48
(
3
),
3185
3191
(
2022
).
4.
IEEE Staff
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
).
5.
R.
Wang
,
K.
Chang
,
X.
Zhao
,
X.
Yu
,
S.
Ma
,
Z.
Zhao
, and
H.
Wang
, “
High-performance Ta2O5-based resistive random-access memory with embedded graphene quantum dots and Pt-Ag composite active layer
,”
Appl. Phys. Lett.
123
(
4
),
043502
(
2023
).
6.
A.
Ranjan
,
H.
Xu
,
C.
Wang
,
J.
Molina
,
X.
Wu
,
H.
Zhang
,
L.
Sun
,
J.
Chu
, and
K. L.
Pey
, “
Probing resistive switching in HfO2/Al2O3 bilayer oxides using in-situ transmission electron microscopy
,”
Appl. Mater. Today
31
,
101739
(
2023
).
7.
C.
Wang
,
B.
Song
, and
Z.
Zeng
, “
Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications
,”
AIP Adv.
7
(
12
),
125209
(
2017
).
8.
S. P.
Swathi
and
S.
Angappane
, “
Low power multilevel resistive switching in titanium oxide-based RRAM devices by interface engineering
,”
J. Sci.: Adv. Mater. Devices
6
(
4
),
601
610
(
2021
).
9.
K.
Yang
,
L.
Fu
,
J.
Chen
,
F.
Wang
,
L.
Tian
,
X.
Song
,
Z.
Wu
, and
Y.
Li
, “
Anatomy of resistive switching behavior in titanium oxide based RRAM device
,”
Mater. Sci. Semicond. Process.
143
,
106492
(
2022
).
10.
H. W.
Shin
,
Y. H.
Shin
, and
J. Y.
Son
, “
Resistive switching characteristics of epitaxial NiO thin films affected by lattice strains and external forces
,”
Appl. Surf. Sci.
566
,
150685
(
2021
).
11.
Y.
Ahn
and
J. Y.
Son
, “
Resistive random access memory characteristics of NiO thin films with an oxygen-deficient NiO0.95 Layer
,”
Ceram. Int.
47
(
7
),
9342
9346
(
2021
).
12.
E.
Nowak
,
E.
Chłopocka
, and
M.
Szybowicz
, “
ZnO and ZnO-based materials as active layer in resistive random-access memory (RRAM)
,”
Crystals
13
,
416
(
2023
).
13.
J.
Park
and
S.
Kim
, “
Improving endurance and reliability by optimizing the alternating voltage in Pt/ZnO/TiN RRAM
,”
Res. Phys.
39
,
105731
(
2022
).
14.
P.
Li
,
X.
Shan
,
Y.
Lin
,
X.
Meng
,
J.
Ma
,
Z.
Wang
,
X.
Zhao
,
B.
Li
,
W.
Liu
,
H.
Xu
, and
Y.
Liu
, “
Tin doping induced high-performance solution-processed Ga2O3 photosensor toward neuromorphic visual system
,”
Adv. Funct. Mater.
33
(
46
),
2303584
(
2023
).
15.
M. N.
Almadhoun
,
M.
Speckbacher
,
B. C.
Olsen
,
E. J.
Luber
,
S. Y.
Sayed
,
M.
Tornow
, and
J. M.
Buriak
, “
Bipolar resistive switching in junctions of gallium oxide and p-type silicon
,”
Nano Lett.
21
(
6
),
2666
2674
(
2021
).
16.
Z.
Fang
,
H. Y.
Yu
,
X.
Li
,
N.
Singh
,
G. Q.
Lo
, and
D. L.
Kwong
, “
HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity
,”
IEEE Electron Device Lett.
32
(
4
),
566
568
(
2011
).
17.
Y.
Niu
,
X.
Yu
,
X.
Dong
,
D.
Zheng
,
S.
Liu
,
Z.
Gan
,
K.
Chang
,
B.
Liu
,
K.
Jiang
,
Y.
Li
, and
H.
Wang
, “
Improved Al2O3 RRAM performance based on SiO2/MoS2 quantum dots hybrid structure
,”
Appl. Phys. Lett.
120
(
2
),
022106
(
2022
).
18.
C. C.
Hsu
and
W. C.
Jhang
, “
Resistive switching behavior of titanium oxynitride fabricated using a thermal nitridation process
,”
IEEE Electron Device Lett.
42
(
7
),
990
993
(
2021
).
19.
K. A.
Soliman
,
A. F.
Zedan
,
A.
Khalifa
,
H. A.
El-Sayed
,
A. S.
Aljaber
,
S. Y.
Alqaradawi
, and
N. K.
Allam
, “
Silver nanoparticles-decorated titanium oxynitride nanotube arrays for enhanced solar fuel generation
,”
Sci. Rep.
7
(
1
),
1913
(
2017
).
20.
X.
Yang
,
Y.
Lin
,
J.
Liu
,
W.
Liu
,
Q.
Bi
,
X.
Song
,
J.
Kang
,
F.
Xu
,
L.
Xu
,
M. N.
Hedhili
,
D.
Baran
,
X.
Zhang
,
T. D.
Anthopoulos
, and
S.
De Wolf
, “
A highly conductive titanium oxynitride electron-selective contact for efficient photovoltaic devices
,”
Adv. Mater.
32
(
32
),
2002608
(
2020
).
21.
N. R.
Mucha
,
J.
Som
,
S.
Shaji
,
S.
Fialkova
,
P. R.
Apte
,
B.
Balasubramanian
,
J. E.
Shield
,
M.
Anderson
, and
D.
Kumar
, “
Electrical and optical properties of titanium oxynitride thin films
,”
J. Mater. Sci.
55
(
12
),
5123
5134
(
2020
).
22.
H.
Liu
,
F.
Zeng
,
Y.
Lin
,
G.
Wang
, and
F.
Pan
, “
Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films
,”
Appl. Phys. Lett.
102
(
18
),
181908
(
2013
).
23.
M.
Ismail
,
C.
Mahata
, and
S.
Kim
, “
Tailoring the electrical homogeneity, large memory window, and multilevel switching properties of HfO2-based memory through interface engineering
,”
Appl. Surf. Sci.
581
,
152427
(
2022
).
24.
Y.
Wang
,
Y.
Xue
,
J.
Su
,
Z.
Lin
,
J.
Zhang
,
J.
Chang
, and
Y.
Hao
, “
Realization of cost-effective and high-performance solar-blind ultraviolet photodetectors based on amorphous Ga2O3 prepared at room temperature
,”
Mater. Today Adv.
16
,
100324
(
2022
).
25.
Y.
Wang
,
Z.
Lin
,
J.
Ma
,
Y.
Wu
,
H.
Yuan
,
D.
Cui
,
M.
Kang
,
X.
Guo
,
J.
Su
,
J.
Miao
,
Z.
Shi
,
T.
Li
,
J.
Zhang
,
Y.
Hao
, and
J.
Chang
, “
Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse
,”
InfoMat
6
(
2
),
e12503
(
2023
).
26.
D. Y.
Guo
,
Z. P.
Wu
,
Y. H.
An
,
P. G.
Li
,
P. C.
Wang
,
X. L.
Chu
,
X. C.
Guo
,
Y. S.
Zhi
,
M.
Lei
,
L. H.
Li
, and
W. H.
Tang
, “
Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications
,”
Appl. Phys. Lett.
106
(
4
),
042105
(
2015
).
27.
Z.
Shen
,
C.
Zhao
,
T.
Zhao
,
W.
Xu
,
Y.
Liu
,
Y.
Qi
,
I. Z.
Mitrovic
,
L.
Yang
, and
C. Z.
Zhao
, “
Artificial synaptic performance with learning behavior for memristor fabricated with stacked solution-processed switching layers
,”
ACS Appl. Electron. Mater.
3
(
3
),
1288
1300
(
2021
).
28.
Z.
Yang
,
J.
Wu
,
P.
Li
,
Y.
Chen
,
Y.
Yan
,
B.
Zhu
,
C. S.
Hwang
,
W.
Mi
,
J.
Zhao
,
K.
Zhang
, and
R.
Guo
, “
Resistive random access memory based on gallium oxide thin films for self-powered pressure sensor systems
,”
Ceram. Int.
46
(
13
),
21141
21148
(
2020
).
29.
M.
Dutta
,
S.
Maikap
, and
J. T.
Qiu
, “
Controlling conductive filament and tributyrin sensing using an optimized porous iridium interfacial layer in Cu/Ir/TiNxOy/TiN
,”
Adv. Elect. Mater.
5
(
2
),
1800288
(
2019
).
30.
C.
Mahata
,
C.
Lee
,
Y.
An
,
M. H.
Kim
,
S.
Bang
,
C. S.
Kim
,
J. H.
Ryu
,
S.
Kim
,
H.
Kim
, and
B. G.
Park
, “
Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems
,”
J. Alloys Compd.
826
,
154434
(
2020
).
31.
J.
Kim
,
S.
Cho
,
T.
Kim
, and
J. J.
Pak
, “
Mimicking synaptic behaviors with cross-point structured TiOx/TiOy-based filamentary RRAM for neuromorphic applications
,”
J. Electr. Eng. Technol.
14
(
2
),
869
875
(
2019
).
32.
D.
Kumar
,
U.
Chand
,
L. W.
Siang
, and
T. Y.
Tseng
, “
High-performance TiN/Al2O3/ZnO/Al2O3/TiN flexible RRAM device with high bending condition
,”
IEEE Trans. Electron Devices
67
(
2
),
493
498
(
2020
).
33.
Y. S.
Zhi
,
P. G.
Li
,
P. C.
Wang
,
D. Y.
Guo
,
Y. H.
An
,
Z. P.
Wu
,
X. L.
Chu
,
J. Q.
Shen
,
W. H.
Tang
, and
C. R.
Li
, “
Reversible transition between bipolar and unipolar resistive switching in Cu2O/Ga2O3 binary oxide stacked layer
,”
AIP Adv.
6
(
1
),
015215
(
2016
).
34.
T. D.
Dongale
,
G. U.
Kamble
,
D. Y.
Kang
,
S. S.
Kundale
,
H.-M.
An
, and
T. G.
Kim
, “
Recent progress in selector and self-rectifying devices for resistive random-access memory application
,”
Phys. Status Solidi RRL
15
(
9
),
2100199
(
2021
).
35.
C.-Y.
Wang
,
S.-P.
Chang
, and
W.-L.
Huang
, “
Enhanced Ga2O3-based RRAM via stacked bilayer ZnO/Ga2O3
,”
ECS Adv.
1
(
2
),
023501
(
2022
).
36.
A. C.
Khot
,
T. D.
Dongale
,
K. A.
Nirmal
,
J. H.
Sung
,
H. J.
Lee
,
R. D.
Nikam
, and
T. G.
Kim
, “
Amorphous boron nitride memristive device for high-density memory and neuromorphic computing applications
,”
ACS Appl. Mater. Interfaces
14
(
8
),
10546
10557
(
2022
).
37.
C. Y.
Huang
,
C. Y.
Huang
,
T. L.
Tsai
,
C. A.
Lin
, and
T. Y.
Tseng
, “
Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance
,”
Appl. Phys. Lett.
104
(
6
),
062901
(
2014
).

Supplementary Material

You do not currently have access to this content.