Addressing microstructural domain disorders within epitaxial β-Ga2O3 is critical for phase engineering and property improvement, whereas the associated evolution of β-Ga2O3 heteroepitaxial domains remains largely unexplored. In this Letter, we conducted a quantitative investigation of microstructural domains in (−201)-oriented epitaxial β-Ga2O3 films grown on (0001) sapphire using halide vapor-phase epitaxy technique with a β-(Al0.57Ga0.43)2O3 buffer layer. The distinct split of x-ray diffraction rocking curves for (−201) β-Ga2O3 grown below 950 °C was observed, indicative of domain tilt disorders. As quantitatively assessed by transmission electron microscopy, the domain tilt angle significantly decreases from 2.33° to 0.90° along the [132] zone axis and from 2.3° to 0.56° along the [010] zone axis, respectively, as the growth temperature is elevated from 850 to 1100 °C. The reduction in tilt disorders is accompanied by the decrease in in-plane domain twist. It indicates that the elimination of small-angle domain boundaries is energetically favorable at high growth temperature above 1000 °C. The quantitative investigation on the evolution of domain disorders in β-Ga2O3 shed light on the pathway to improve epitaxial quality for cutting-edge power electronic and optoelectronic device applications.

1.
H. H.
Tippins
,
Phys. Rev.
140
(
1A
),
A316
A319
(
1965
).
2.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
108
(
7
),
052105
(
2016
).
3.
Q.
He
,
W.
Mu
,
H.
Dong
,
S.
Long
,
Z.
Jia
,
H.
Lv
,
Q.
Liu
,
M.
Tang
,
X.
Tao
, and
M.
Liu
,
Appl. Phys. Lett.
110
(
9
),
093503
(
2017
).
4.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Phys. Status Solidi A
211
(
1
),
21
26
(
2014
).
5.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
IEEE Electron Device Lett.
39
(
9
),
1385
1388
(
2018
).
6.
Y.
Lv
,
J.
Ma
,
W.
Mi
,
C.
Luan
,
Z.
Zhu
, and
H.
Xiao
,
Vacuum
86
(
12
),
1850
1854
(
2012
).
7.
S.
Nakagomi
and
Y.
Kokubun
,
J. Cryst. Growth
349
(
1
),
12
18
(
2012
).
8.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 1
46
(
11
),
7217
7220
(
2007
).
9.
F. B.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
, and
Q. X.
Guo
,
J. Cryst. Growth
387
,
96
100
(
2014
).
10.
Z.
Cheng
,
M.
Hanke
,
P.
Vogt
,
O.
Bierwagen
, and
A.
Trampert
,
Appl. Phys. Lett.
111
(
16
),
162104
(
2017
).
11.
A. K.
Mondal
,
R.
Deivasigamani
,
L. K.
Ping
,
M. A.
Shazni Mohammad Haniff
,
B. T.
Goh
,
R. H.
Horng
, and
M. A.
Mohamed
,
ACS Omega
7
(
45
),
41236
41245
(
2022
).
12.
H.
Zhang
,
E. J.
Miller
, and
E. T.
Yu
,
J. Appl. Phys.
99
(
2
),
023703
(
2006
).
13.
B.
Fu
,
Z.
Jia
,
W.
Mu
,
Y.
Yin
,
J.
Zhang
, and
X.
Tao
,
J. Semicond.
40
(
1
),
011804
(
2019
).
14.
A.
Azarov
,
J. G.
Fernandez
,
J.
Zhao
,
F.
Djurabekova
,
H.
He
,
R.
He
,
O.
Prytz
,
L.
Vines
,
U.
Bektas
,
P.
Chekhonin
,
N.
Klingner
,
G.
Hlawacek
, and
A.
Kuznetsov
,
Nat. Commun.
14
(
1
),
4855
(
2023
).
15.
J.
Zhao
,
J. G.
Fernández
,
A.
Azarov
,
R.
He
,
Ø.
Prytz
,
K.
Nordlund
,
M.
Hua
,
F.
Djurabekova
, and
A.
Kuznetsov
, arXiv:1510.07903 (
2024
).
16.
B.
Feng
,
Z.
Li
,
F.
Cheng
,
L.
Xu
,
T.
Liu
,
Z.
Huang
,
F.
Li
,
J.
Feng
,
X.
Chen
,
Y.
Wu
,
G.
He
, and
S.
Ding
,
Phys. Status Solidi A
218
(
4
),
2000457
(
2020
).
17.
L.
Qing
,
M.
Qing-Chang
, and
H.
Bande
,
Micron Microsc. Acta
20
,
255
259
(
1989
).
18.
L.
Qing
,
Micron Microsc. Acta
20
,
261
264
(
1989
).
19.
P. M.
Kelly
,
C. J.
Wauchope
, and
X.
Zhang
,
Microsc. Res. Tech.
28
(
5
),
448
451
(
1994
).
20.
K.
Shojiki
,
R.
Ishii
,
K.
Uesugi
,
M.
Funato
,
Y.
Kawakami
, and
H.
Miyake
,
AIP Adv.
9
(
12
),
125342
(
2019
).
21.
Y.
Zhang
,
Z.
Wang
,
Y.
Kuang
,
H.
Gong
,
J.
Hao
,
X.
Sun
,
F.
Ren
,
Y.
Yang
,
S.
Gu
,
Y.
Zheng
,
R.
Zhang
, and
J.
Ye
,
Appl. Phys. Lett.
120
(
12
),
121601
(
2022
).
22.
C.
Kranert
,
M.
Jenderka
,
J.
Lenzner
,
M.
Lorenz
,
H.
von Wenckstern
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
J. Appl. Phys.
117
(
12
),
125703
(
2015
).
23.
J.
Li
,
X.
Chen
,
T.
Ma
,
X.
Cui
,
F.-F.
Ren
,
S.
Gu
,
R.
Zhang
,
Y.
Zheng
,
S. P.
Ringer
,
L.
Fu
,
H. H.
Tan
,
C.
Jagadish
, and
J.
Ye
,
Appl. Phys. Lett.
113
(
4
),
041901
(
2018
).
24.
L.
Qian
,
Z.
Wu
,
Y.
Zhang
,
P. T.
Lai
,
X.
Liu
, and
Y.
Li
,
ACS Photonics
4
(
9
),
2203
2211
(
2017
).
25.
C.
Liao
,
K.
Li
,
C.
Torres-Castanedo
,
G.
Zhang
, and
X.
Li
,
Appl. Phys. Lett.
118
(
3
),
032103
(
2021
).
26.
M. S.
Bae
,
S. H.
Kim
,
J. S.
Baek
, and
J. H.
Koh
,
Coatings
11
(
10
),
1220
(
2021
).
27.
V. I.
Nikolaev
,
V.
Maslov
,
S. I.
Stepanov
,
A. I.
Pechnikov
,
V.
Krymov
,
I. P.
Nikitina
,
L. I.
Guzilova
,
V. E.
Bougrov
, and
A. E.
Romanov
,
J. Cryst. Growth
457
,
132
136
(
2017
).
28.
S.
Dolabella
,
A.
Borzi
,
A.
Dommann
, and
A.
Neels
,
Small Methods
6
(
2
),
2100932
(
2022
).
29.
Y.
Yao
,
Y.
Ishikawa
, and
Y.
Sugawara
,
J. Appl. Phys.
126
,
205106
(
2019
).
30.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
J.
Boeckl
, and
H.
Zhao
,
Phys. Status Solidi A
215
(
2
),
1700467
(
2018
).
31.
T.
Ma
,
X.
Chen
,
Y.
Kuang
,
L.
Li
,
J.
Li
,
F.
Kremer
,
F.
Ren
,
S.
Gu
,
R.
Zhang
,
Y.
Zheng
,
H.
Tan
,
C.
Jagadish
, and
J.
Ye
,
Appl. Phys. Lett.
115
(
18
),
182101
(
2019
).
32.
P.
Mazzolini
,
A.
Falkenstein
,
C.
Wouters
,
R.
Schewski
,
T.
Markurt
,
Z.
Galazka
,
M.
Martin
,
M.
Albrecht
, and
O.
Bierwagen
,
APL Mater.
8
(
1
),
011107
(
2020
).
33.
S.
Nakagomi
,
S.
Kaneko
, and
Y.
Kokubun
,
Phys. Status Solidi B
252
(
3
),
612
620
(
2014
).
34.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: Diffraction, Imaging and Spectrometry
(
Springer
,
1996
).
35.
H.
Vahidi
,
K.
Syed
,
H.
Guo
,
X.
Wang
,
J. L.
Wardini
,
J.
Martinez
, and
W. J.
Bowman
,
Crystals
11
(
8
),
878
(
2021
).
36.
S.
Nakagomi
and
Y.
Kokubun
,
Phys. Status Solidi A
210
(
9
),
1738
1744
(
2013
).

Supplementary Material

You do not currently have access to this content.