Thermal expansion tensor represents a key parameter for the numerical modeling of the crystal growth process. However, the modeling of β-Ga2O3 commonly utilizes one single thermal expansion constant that misses its anisotropic nature and temperature-dependent characteristics. Herein, we addressed this limitation by calibrating an anisotropic, temperature-dependent thermal expansion tensor using the experimental lattice parameters of β-Ga2O3 up to 1200 K. We found that COMSOL Multiphysics simulations employing the calibrated tensor yield stress distribution remarkably distinct from those relying on the commonly assumed constants. Specifically, our simulations predict a von Mises stress concentration near the crystal bottom, which explains the experimentally observed crack formation at corresponding locations. This contrasts with the simulations using the single-value thermal expansion constant, which fails to predict such stress concentration. The physical origin of crystal cracking is found to be rooted in the compressive force exerted by the iridium crucible during the cooling process. Our findings suggest that the physical anisotropy of β-Ga2O3 should be carefully considered in modeling and simulation. With the calibrated thermal expansion tensor, we provide a validated set of thermomechanical parameters for reliable β-Ga2O3 crystal growth simulations.

1.
E.
Farzana
and
J. S.
Speck
,
Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications
(
AIP Publishing LLC
,
2023
), Chap. 1.
2.
M. H.
Wong
,
Ultrawide Bandgap β-Ga2O3 Semiconductor: Theory and Applications
(
AIP Publishing LLC
,
2023
), Chap. 8.
3.
X.
Zhou
,
Y.
Ma
,
G.
Xu
,
Q.
Liu
,
J.
Liu
,
Q.
He
,
X.
Zhao
, and
S.
Long
,
Appl. Phys. Lett.
121
,
223501
(
2022
).
4.
Z.
Liu
and
W.
Tang
,
J. Phys. D
56
,
093002
(
2023
).
5.
P.
Li
,
X.
Han
,
D.
Chen
,
Q.
Sai
, and
H.
Qi
,
Mater. Sci. Semicond. Process.
153
,
107159
(
2023
).
6.
Z.
Galazka
,
A.
Fiedler
,
A.
Popp
,
S.
Ganschow
,
A.
Kwasniewski
,
P.
Seyidov
,
M.
Pietsch
,
A.
Dittmar
,
S. B.
Anooz
,
K.
Irmscher
,
M.
Suendermann
,
D.
Klimm
,
T.
Chou
,
J.
Rehm
,
T.
Schroeder
, and
M.
Bickermann
,
J. Appl. Phys.
133
,
035702
(
2023
).
7.
Y.
Ueda
,
T.
Igarashi
,
K.
Koshi
,
S.
Yamakoshi
,
K.
Sasaki
, and
A.
Kuramata
,
Jpn. J. Appl. Phys., Part 1
62
,
SF1006
(
2023
).
8.
N.
Xia
,
Y.
Liu
,
D.
Wu
,
L.
Li
,
K.
Ma
,
J.
Wang
,
H.
Zhang
, and
D.
Yang
,
J. Alloys Compd.
935
,
168036
(
2023
).
9.
D.
Wu
,
N.
Xia
,
K.
Ma
,
J.
Wang
,
C.
Li
,
Z.
Jin
,
H.
Zhang
, and
D.
Yang
,
Crystals
12
,
1715
(
2022
).
10.
C.
Le
,
Z.
Li
,
W.
Mu
,
Z.
Jia
, and
L.
Liu
,
J. Cryst. Growth
506
,
83
(
2019
).
11.
K.
Kakimoto
,
I.
Takahashi
,
T.
Tomida
,
K.
Kamada
,
Y.
Yao
,
S.
Nakano
, and
A.
Yoshikawa
,
J. Cryst. Growth
609
,
127126
(
2023
).
12.
D.
Carrasco
,
E.
Nieto-Pinero
,
M.
Alonso-Orts
,
R.
Serna
,
J. M.
San Juan
,
M. L.
,
J.
Jesenovec
,
J. S.
McCloy
,
E.
Nogales
, and
B.
Méndez
,
Nanomaterials
13
,
1126
(
2023
).
13.
W.
Miller
,
K.
Böttcher
,
Z.
Galazka
, and
J.
Schreuer
,
Crystals
7
,
26
(
2017
).
14.
ISO, “
TMA Part 2, Determination of CTE and glass transition temperature
,” Standard No. ISO 11359-2-99,
1999
.
15.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(Saunders College Publishing,
1976
).
16.
N. N.
Rammo
and
S. B.
Farid
,
Powder Diffr.
9
,
148
(
1994
).
17.
K. A.
Mengle
and
E.
Kioupakis
,
AIP Adv.
9
,
015313
(
2019
).
18.
Z.
Cheng
,
M.
Hanke
,
Z.
Galazka
, and
A.
Trampert
,
Appl. Phys. Lett.
113
,
182102
(
2018
).
19.
F.
Orlandi
,
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
, and
R.
Fornari
,
Appl. Phys. Express
8
,
111101
(
2015
).
20.
J. L.
Schlenker
,
G. V.
Gibbs
, and
M. B.
Boisen
, Jr.
,
Am. Miner.
60
,
828
(
1975
); available at https://pubs.geoscienceworld.org/msa/ammin/article-abstract/60/9-10/828/543161/Thermal-expansion-coefficients-for-monoclinic.
21.
R. T.
Wimber
,
J. Appl. Phys.
47
,
5115
(
2008
).
22.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
23.
V.
Wang
,
N.
Xu
,
J.
Liu
,
G.
Tang
, and
W.
Geng
,
Comput. Phys. Commun.
267
,
108033
(
2021
).
25.
K.
Adachi
,
H.
Ogi
,
N.
Takeuchi
,
N.
Nakamura
,
H.
Watanabe
,
T.
Ito
, and
Y.
Ozaki
,
J. Appl. Phys.
124
,
085102
(
2018
).
26.
J.
Furthmüller
and
F.
Bechstedt
,
Phys. Rev. B
93
,
115204
(
2016
).
27.
H.
Yamaguchi
,
S.
Watanabe
,
Y.
Yamaoka
,
K.
Koshi
, and
A.
Kuramata
,
Jpn. J. Appl. Phys., Part 1
61
,
045506
(
2022
).

Supplementary Material

You do not currently have access to this content.