Traditionally, elemental Ga and Si have been used to supply Ga and Si, respectively, in molecular beam epitaxy (MBE) to grow Si-doped β-Ga2O3. In this work, we investigated the feasibility of enhancing the β-Ga2O3 growth rate by using a Ga-suboxide precursor in a plasma-assisted MBE. Additionally, Si doping of β-Ga2O3 using diluted disilane and Ga-suboxide as the Si and Ga precursors, respectively, was studied. The growth rate and film quality under different suboxide fluxes were inspected. We found that Si concentration has an inverse relationship with Ga2O flux due to atom competition. A room-temperature mobility of 115 cm2/V s was measured for an electron concentration of 1.2 × 1017 cm−3 on the sample grown using a Ga2O beam equivalent pressure of 1.1 × 10−7 Torr and a disilane flow rate of 0.006 sccm. Temperature-dependent Hall characterization was performed on this sample, revealing compensating acceptor and neutral impurity densities of 2.70 × 1015 and 8.23 × 1017 cm−3, respectively.

1.
H.
Tippins
, “
Optical absorption and photoconductivity in the band edge of β−Ga2O3
,”
Phys. Rev.
140
(
1A
),
A316
(
1965
).
2.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H.
Zhang
, “
Recent progress on the electronic structure, defect, and doping properties of Ga2O3
,”
APL Mater.
8
(
2
),
020906
(
2020
).
3.
S.
Stepanov
,
V.
Nikolaev
,
V.
Bougrov
, and
A.
Romanov
, “
Gallium OXIDE: Properties and Applica 498 a review
,”
Rev. Adv. Mater. Sci.
44
,
63
86
(
2016
).
4.
R.
Suzuki
,
S.
Nakagomi
,
Y.
Kokubun
,
N.
Arai
, and
S.
Ohira
, “
Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing
,”
Appl. Phys. Lett.
94
(
22
),
222102
(
2009
).
5.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
, “
Deep-ultraviolet transparent conductive β-Ga2O3 thin films
,”
Appl. Phys. Lett.
77
(
25
),
4166
4168
(
2000
).
6.
D.
Guo
,
Z.
Wu
,
P.
Li
,
Y.
An
,
H.
Liu
,
X.
Guo
,
H.
Yan
,
G.
Wang
,
C.
Sun
, and
L.
Li
, “
Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology
,”
Opt. Mater. Express
4
(
5
),
1067
1076
(
2014
).
7.
X.
Xia
,
J.-S.
Li
,
Z.
Wen
,
K.
Khan
,
M. I.
Khan
,
E.
Ahmadi
,
Y.
Oshima
,
D. C.
Hays
,
F.
Ren
, and
S.
Pearton
, “
Type-II band alignment for atomic layer deposited HfSiO4 on α-Ga2O3
,”
J. Vac. Sci. Technol. A
41
(
2
),
023205
(
2023
).
8.
Z.
Wen
,
K.
Khan
,
K.
Sun
,
R.
Wellen
,
Y.
Oshima
, and
E.
Ahmadi
, “
Thermal stability of HVPE-grown (0001) α-Ga2O3 on sapphire template under vacuum and atmospheric environments
,”
J. Vac. Sci. Technol. A
41
(
4
),
043403
(
2023
).
9.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202A2
(
2016
).
10.
S.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
, “
Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS
,”
J. Appl. Phys.
124
(
22
),
220901
(
2018
).
11.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
, and
B.
Monemar
, “
Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n–Ga2O3 drift layers grown by halide vapor phase epitaxy
,”
Appl. Phys. Lett.
108
(
13
),
133503
(
2016
).
12.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
Z.
Zhang
,
N.
Tanen
,
Q. T.
Thieu
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
, and
D.
Jena
, “
Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors
,”
Appl. Phys. Lett.
113
(
12
),
122103
(
2018
).
13.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S.
Pearton
, and
A.
Kuramata
, “
2300V reverse breakdown voltage Ga2O3 Schottky rectifiers
,”
ECS J. Solid State Sci. Technol.
7
(
5
),
Q92
(
2018
).
14.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
1-kV vertical Ga2O3 field-plated Schottky barrier diodes
,”
Appl. Phys. Lett.
110
(
10
),
103506
(
2017
).
15.
L.
Du
,
Q.
Xin
,
M.
Xu
,
Y.
Liu
,
G.
Liang
,
W.
Mu
,
Z.
Jia
,
X.
Wang
,
G.
Xin
, and
X.-T.
Tao
, “
Achieving high performance Ga2O3 diodes by adjusting chemical composition of tin oxide Schottky electrode
,”
Semicond. Sci. Technol.
34
(
7
),
075001
(
2019
).
16.
L.
Du
,
Q.
Xin
,
M.
Xu
,
Y.
Liu
,
W.
Mu
,
S.
Yan
,
X.
Wang
,
G.
Xin
,
Z.
Jia
, and
X.-T.
Tao
, “
High-performance Ga2O3 diode based on tin oxide Schottky contact
,”
IEEE Electron Device Lett.
40
(
3
),
451
454
(
2019
).
17.
K.
Zeng
,
Y.
Jia
, and
U.
Singisetti
, “
Interface state density in atomic layer deposited SiO2/β-Ga2O3 ( 2 ¯ 01) MOSCAPs
,”
IEEE Electron Device Lett.
37
(
7
),
906
909
(
2016
).
18.
M. A.
Bhuiyan
,
H.
Zhou
,
R.
Jiang
,
E. X.
Zhang
,
D. M.
Fleetwood
,
D. Y.
Peide
, and
T.-P.
Ma
, “
Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors
,”
IEEE Electron Device Lett.
39
(
7
),
1022
1025
(
2018
).
19.
H.
Bae
,
J.
Noh
,
S.
Alghamdi
,
M.
Si
, and
D. Y.
Peide
, “
Ultraviolet light-based current–voltage method for simultaneous extraction of donor-and acceptor-like interface traps in β-Ga2O3 FETs
,”
IEEE Electron Device Lett.
39
(
11
),
1708
1711
(
2018
).
20.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V
,”
IEEE Electron Device Lett.
37
(
2
),
212
215
(
2016
).
21.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
(
1
),
013504
(
2012
).
22.
C.
Joishi
,
S.
Rafique
,
Z.
Xia
,
L.
Han
,
S.
Krishnamoorthy
,
Y.
Zhang
,
S.
Lodha
,
H.
Zhao
, and
S.
Rajan
, “
Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes
,”
Appl. Phys. Express
11
(
3
),
031101
(
2018
).
23.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
N.
Tanen
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, “
Enhancement-mode Ga2O3 vertical transistors with breakdown voltage > 1 kV
,”
IEEE Electron Device Lett.
39
(
6
),
869
872
(
2018
).
24.
B.
Chatterjee
,
W.
Li
,
K.
Nomoto
,
H. G.
Xing
, and
S.
Choi
, “
Thermal design of multi-fin Ga2O3 vertical transistors
,”
Appl. Phys. Lett.
119
(
10
),
103502
(
2021
).
25.
H.-C.
Huang
,
Z.
Ren
,
A.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
Z.
Yang
,
X.
Luo
,
A. Q.
Huang
,
A.
Green
,
K.
Chabak
, and
H.
Zhao
, “
βGa2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching
,”
Appl. Phys. Lett.
121
(
5
),
052102
(
2022
).
26.
S.
Xu
,
L.
Liu
,
G.
Qu
,
X.
Zhang
,
C.
Jia
,
S.
Wu
,
Y.
Ma
,
Y. J.
Lee
,
G.
Wang
, and
J.-H.
Park
, “
Single β-Ga2O3 nanowire based lateral FinFET on Si
,”
Appl. Phys. Lett.
120
(
15
),
153501
(
2022
).
27.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
R.
Jinno
,
T.
Nakamura
,
D.
Jena
, and
H.
Xing
, “
1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation
,” in
31st International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2019
), pp.
483
486
.
28.
S.
Krishnamoorthy
,
Z.
Xia
,
C.
Joishi
,
Y.
Zhang
,
J.
McGlone
,
J.
Johnson
,
M.
Brenner
,
A. R.
Arehart
,
J.
Hwang
, and
S.
Lodha
, “
Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor
,”
Appl. Phys. Lett.
111
(
2
),
023502
(
2017
).
29.
Y.
Zhang
,
A.
Neal
,
Z.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
, and
K.
Chabak
, “
Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures
,”
Appl. Phys. Lett.
112
(
17
),
173502
(
2018
).
30.
H.
Yuan
,
J.
Su
,
R.
Guo
,
K.
Tian
,
Z.
Lin
,
J.
Zhang
,
J.
Chang
, and
Y.
Hao
, “
Contact barriers modulation of graphene/β-Ga2O3 interface for high-performance Ga2O3 devices
,”
Appl. Surf. Sci.
527
,
146740
(
2020
).
31.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-Ion implantation doping
,”
IEEE Electron Device Lett.
40
(
3
),
431
434
(
2019
).
32.
M. H.
Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker
,”
IEEE Electron Device Lett.
41
(
2
),
296
299
(
2020
).
33.
M. H.
Wong
,
K.
Goto
,
Y.
Morikawa
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer
,”
Appl. Phys. Express
11
(
6
),
064102
(
2018
).
34.
F.
Alema
,
Y.
Zhang
,
A.
Osinsky
,
N.
Valente
,
A.
Mauze
,
T.
Itoh
, and
J. S.
Speck
, “
Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown β-Ga2O3
,”
APL Mater.
7
(
12
),
121110
(
2019
).
35.
Z.
Feng
,
A.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
(
25
),
250601
(
2019
).
36.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature
,”
APL Mater.
7
(
2
),
022506
(
2019
).
37.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
D.
Klimm
,
R.
Schewski
, and
G.
Wagner
, “
Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy
,”
J. Mater. Sci.
51
(
7
),
3650
3656
(
2016
).
38.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
, “
Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates
,”
ECS J. Solid State Sci. Technol.
6
(
2
),
Q3040
(
2017
).
39.
K. D.
Leedy
,
K. D.
Chabak
,
V.
Vasilyev
,
D. C.
Look
,
J. J.
Boeckl
,
J. L.
Brown
,
S. E.
Tetlak
,
A. J.
Green
,
N. A.
Moser
, and
A.
Crespo
, “
Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition
,”
Appl. Phys. Lett.
111
(
1
),
012103
(
2017
).
40.
Z.
Wen
,
K.
Khan
,
X.
Zhai
, and
E.
Ahmadi
, “
Si doping of β-Ga2O3 by disilane via hybrid plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
122
(
8
),
082101
(
2023
).
41.
E.
Ahmadi
,
Y.
Oshima
,
F.
Wu
, and
J. S.
Speck
, “
Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
32
(
3
),
035004
(
2017
).
42.
N. K.
Kalarickal
,
Z.
Xia
,
J.
McGlone
,
S.
Krishnamoorthy
,
W.
Moore
,
M.
Brenner
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3
,”
Appl. Phys. Lett.
115
(
15
),
152106
(
2019
).
43.
J.
McCandless
,
V.
Protasenko
,
B.
Morell
,
E.
Steinbrunner
,
A.
Neal
,
N.
Tanen
,
Y.
Cho
,
T.
Asel
,
S.
Mou
, and
P.
Vogt
, “
Controlled Si doping of β-Ga2O3 by molecular beam epitaxy
,”
Appl. Phys. Lett.
121
(
7
),
072108
(
2022
).
44.
H.
Okumura
,
M.
Kita
,
K.
Sasaki
,
A.
Kuramata
,
M.
Higashiwaki
, and
J. S.
Speck
, “
Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
7
(
9
),
095501
(
2014
).
45.
S.-H.
Han
,
A.
Mauze
,
E.
Ahmadi
,
T.
Mates
,
Y.
Oshima
, and
J. S.
Speck
, “
n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
33
(
4
),
045001
(
2018
).
46.
A.
Mauze
,
Y.
Zhang
,
T.
Itoh
,
E.
Ahmadi
, and
J. S.
Speck
, “
Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
117
(
22
),
222102
(
2020
).
47.
P.
Vogt
,
F. V.
Hensling
,
K.
Azizie
,
C. S.
Chang
,
D.
Turner
,
J.
Park
,
J. P.
McCandless
,
H.
Paik
,
B. J.
Bocklund
, and
G.
Hoffman
, “
Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy
,”
APL Mater.
9
(
3
),
031101
(
2021
).
48.
P.
Vogt
and
O.
Bierwagen
, “
Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption
,”
Appl. Phys. Lett.
108
(
7
),
072101
(
2016
).
49.
K.
Azizie
,
F. V.
Hensling
,
C. A.
Gorsak
,
Y.
Kim
,
N. A.
Pieczulewski
,
D. M.
Dryden
,
M.
Senevirathna
,
S.
Coye
,
S.-L.
Shang
, and
J.
Steele
, “
Silicon-doped β-Ga2O3 films grown at 1 μm/h by suboxide molecular-beam epitaxy
,”
APL Mater.
11
(
4
),
041102
(
2023
).
50.
Y.
Oshima
,
E.
Ahmadi
,
S.
Kaun
,
F.
Wu
, and
J. S.
Speck
, “
Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
33
(
1
),
015013
(
2017
).
51.
S. W.
Kaun
,
F.
Wu
, and
J. S.
Speck
, “
β-(AlxGa1−x)2O3/Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy
,”
J. Vac. Sci. Technol. A
33
(
4
),
041508
(
2015
).
52.
A.
Mauze
,
Y.
Zhang
,
T.
Mates
,
F.
Wu
, and
J. S.
Speck
, “
Investigation of unintentional Fe incorporation in (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
115
(
5
),
052102
(
2019
).
53.
J. F.
McGlone
,
Z.
Xia
,
Y.
Zhang
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S. A.
Ringel
, and
A. R.
Arehart
, “
Trapping Effects in Si δ-doped β-Ga2O3 MESFETs on an Fe-Doped β-Ga2O3 Substrate
,”
IEEE Electron Device Lett.
39
(
7
),
1042
1045
(
2018
).
54.
C.
Joishi
,
Z.
Xia
,
J.
McGlone
,
Y.
Zhang
,
A. R.
Arehart
,
S.
Ringel
,
S.
Lodha
, and
S.
Rajan
, “
Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors
,”
Appl. Phys. Lett.
113
(
12
),
123501
(
2018
).
55.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
J.
Ogle
,
L.
Whittaker-Brooks
, and
S.
Krishnamoorthy
, “
Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: Expanding the growth window
,”
Appl. Phys. Lett.
117
(
14
),
142102
(
2020
).
56.
Z.
Feng
,
A. A. U.
Bhuiyan
,
Z.
Xia
,
W.
Moore
,
Z.
Chen
,
J. F.
McGlone
,
D. R.
Daughton
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Probing charge transport and background doping in metal‐organic chemical vapor deposition‐grown (010) β‐Ga2O3
,”
Phys. Status Solidi (RRL)
14
(
8
),
2000145
(
2020
).
57.
E.
Ahmadi
,
O. S.
Koksaldi
,
S. W.
Kaun
,
Y.
Oshima
,
D. B.
Short
,
U. K.
Mishra
, and
J. S.
Speck
, “
Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
10
(
4
),
041102
(
2017
).
58.
S. M.
Sze
,
Y.
Li
, and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
2007
).
59.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
), pp.
136
137
.
60.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
), p.
70
.
61.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
), p.
86
.
62.
C.
Erginsoy
, “
Neutral impurity scattering in semiconductors
,”
Phys. Rev.
79
(
6
),
1013
1014
(
1950
).
63.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
, and
N.
Moser
, “
Donors and deep acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
(
6
),
062101
(
2018
).
64.
P.
Deák
,
Q. D.
Ho
,
F.
Seemann
,
B.
Aradi
,
M.
Lorke
, and
T.
Frauenheim
, “
Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in β−Ga2O3
,”
Phys. Rev. B
95
(
7
),
075208
(
2017
).
65.
K.
Irmscher
,
Z.
Galazka
,
M.
Pietsch
,
R.
Uecker
, and
R.
Fornari
, “
Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Appl. Phys.
110
(
6
),
063720
(
2011
).
66.
T.
Oishi
,
Y.
Koga
,
K.
Harada
, and
M.
Kasu
, “
High-mobility β-Ga2O3 ( 2 ¯ 01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact
,”
Appl. Phys. Express
8
(
3
),
031101
(
2015
).
You do not currently have access to this content.