In this Letter, we proposed a robust InGaAs/Si bonded heterojunction by polycrystalline Si (poly-Si) and amorphous interlayers. The ultra-thin amorphous layer is induced through Ar plasma treatment. The synergism of poly-Si and amorphous interlayers effectively blocks the lattice mismatch and releases the interfacial thermal stress. A bubble- and defect-free bonding interface is achieved even if after annealing at 500 °C, demonstrating compatibility with high-temperature processes. The heavily doped poly-Si interlayer sweeps the electric field from the poly-Si layer and concentrates in the amorphous layer, rendering electron tunneling through the bonding interface and reducing the interfacial recombination rates. As a result, the bonded InGaAs/Si PIN photodetector harvests a saturated and low dark density of 0.26 mA/cm2 at −1 V and a high rectification ratio of 3.5 × 105 at ±1 V. Additionally, the non-optimized device achieves a high responsivity of 0.82 A/W at 1550 nm. These results indicate that the proposed bonding strategy provides a viable route to tackle the electronic, optical, and thermal barriers of integrating single-crystal InGaAs into Si platforms. This enables the photodetection of InGaAs/Si devices with a high signal-to-noise ratio.

1.
S.
Jain
,
M.
Sysak
,
M.
Swaidan
, and
J.
Bowers
,
Appl. Phys. Lett.
100
,
201103
(
2012
).
2.
Y. C.
Zhou
,
Z. H.
Zhu
,
D.
Crouse
, and
Y. H.
Lo
,
Appl. Phys. Lett.
73
,
2337
2339
(
1998
).
3.
K. S.
McKay
,
F. P.
Lu
,
J.
Kim
et al,
Appl. Phys. Lett.
90
,
222111
(
2007
).
4.
B.
Pallab
,
Semiconductor Optoelectronic Devices
, 2nd ed. (
Prentice Hall
,
Upper Saddle River, NJ
,
1997
).
5.
G.
Barbarino
,
R. D.
Asmundis
,
G. D.
Rosa
et al,
Photodiodes - World Activities 2011
(
InTechOpen
,
2011
), pp.
183
226
.
6.
A.
Pauchard
,
Z.
Pan
,
M.
Bitter
,
Y.
Kang
et al, in
15th Annual Meeting on IEEE Lasers and Electro-Optics Society
(
IEEE
,
2002
), Vol.
2
, pp.
677
678
.
7.
Z.
Huang
,
C.
Li
,
D.
Liang
et al,
Optica
3
,
793
798
(
2016
).
8.
S.
Mauthe
,
Y.
Baumgartner
,
M.
Sousa
et al,
Nat. Commun.
11
,
4565
(
2020
).
9.
R. S.
Goldman
,
K. L.
Kavanagh
,
H. H.
Wieder
et al,
J. Appl. Phys.
83
,
5137
5149
(
1998
).
10.
Y. C.
Lin
,
M. L.
Huang
,
C. Y.
Chen
et al,
Appl. Phys. Express
7
,
041202
(
2014
).
11.
M.
Radosavljevic
,
G.
Chu-Kung
,
S.
Corcoran
et al, in
2009 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2009
), pp.
1
4
.
12.
F. E.
Ejeckam
,
C. L.
Chua
,
Z. H.
Zhu
et al,
Appl. Phys. Lett.
67
,
3936
(
1995
).
13.
H. L.
Peng
,
H. W.
Qu
, and
W. H.
Zheng
,
Proc. SPIE
11564
,
1156407
(
2020
).
14.
A. R.
Hawkins
,
T. E.
Reynolds
,
D. R.
England
et al,
Appl. Phys. Lett.
68
,
3692
(
1996
).
15.
P.
Mages
and
P. K.
Yu
,
MRS Proc.
722
,
K6.5
(
2002
).
16.
D.
Pasquariello
and
K.
Hjort
,
IEEE J. Sel. Top. Quantum Electron.
8
,
118
131
(
2002
).
17.
B. E.
Roberds
, “Science and technology of plasma activated direct wafer bonding,” Ph.D. thesis (
University of California
,
Davis
,
1998
).
18.
Y. Q.
Zhao
,
W.
Liu
,
Y.
Bao
et al,
Proc. SPIE
11209
,
112094V
(
2019
).
19.
C. Y.
Yeo
,
D. W.
Xu
,
S. F.
Yoon
, and
E. A.
Fitzgerald
,
Appl. Phys. Lett.
102
,
054107
(
2013
).
20.
Y. Q.
Zhao
,
W.
Liu
,
Y.
Bao
et al,
Mater. Sci. Semicond. Process.
143
,
106481
(
2016
).
21.
H. Y.
Chua
,
X. S.
Luo
,
W. H. S.
Toh
et al, in
2012 Photonics Global Conference (PGC)
(
IEEE
,
2012
), pp.
1
3
.
22.
S.
Kondo
,
T.
Okumura
,
R.
Osabe
et al, in
22nd International Conference on Indium Phosphide and Related Materials (IPRM)
(
IEEE
,
2010
), pp.
1
4
.
23.
J.
Arokiaraj
,
S.
Tripathy
,
S.
Vicknesh
, and
S. J.
Chua
,
Appl. Surf. Sci.
253
,
1243
1246
(
2006
).
24.
J.
Jiao
,
X.
Chen
,
Y.
Rao
et al,
Appl. Surf. Sci.
628
,
157296
(
2023
).
25.
K.
Qian
,
S.
Wu
,
J.
Qian
et al,
J. Phys. D
56
,
075101
(
2023
).
26.
J. J.
Wortman
and
R. A.
Evans
,
J. Appl. Phys.
36
,
153
156
(
1965
).
27.
Y. A.
Goldberg
and
N. M.
Schmidt
,
Handbook Series on Semiconductor Parameters
(
World Scientific
,
1999
), Vol.
2
, pp.
62
88
.
28.
H.
Yu
,
M.
Schaekers
,
T.
Schram
et al,
IEEE Electron Device Lett.
35
,
957
959
(
2014
).
29.
P.
Wen
,
P.
Tiwari
,
S.
Mauthe
et al,
Nat. Commun.
13
,
909
(
2022
).
30.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
).
31.
S. Y.
Ke
,
Z.
Chen
,
J.
Zhou
et al,
IEEE Trans. Electron Devices
68
,
1694
1701
(
2021
).
32.
K. W.
Ang
,
J. W.
Ng
,
G. Q.
Lo
, and
D. L.
Kwong
,
Appl. Phys. Lett.
94
,
223515
(
2009
).
33.
G.
Eneman
,
G. M.
Bargallo
,
G.
Hellings
et al,
ECS Trans.
28
,
143
152
(
2010
).
34.
E.
Simoen
,
F. D.
Stefano
,
G.
Eneman
et al,
IEEE Electron Device Lett.
30
,
562
564
(
2009
).
35.
S. W.
Feng
and
C. Z.
Lu
, in
Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology
(
IEEE
,
2004
), Vol.
3
, pp.
2332
2334
.
36.
K.
Ohnaka
,
M.
Kubo
, and
J.
Shibata
,
IEEE Trans. Electron Devices
34
,
199
204
(
1987
).
37.
B.
Chen
,
Q.
Zhou
,
D. C.
Mclntosh
et al,
Electron. Lett.
48
,
1340
1341
(
2012
).
38.
C. C.
Huang
,
C. L.
Ho
,
M. C.
Wu
et al,
IEEE Electron Device Lett.
36
,
1066
1068
(
2015
).
39.
X.
Li
,
J.
Zhang
,
C.
Yue
et al,
Sci. Rep.
12
,
7681
(
2022
).
40.
B. F.
Levine
,
A. R.
Hawkins
,
S.
Hiu
et al,
Appl. Phys. Lett.
70
,
2449
2451
(
1997
).
41.
D. S.
Um
,
Y. S.
Lee
,
S.
Lim
et al,
ACS Appl. Mater. Interfaces
8
,
26105
–−
26111
(
2016
).
42.
Y.
Yamada
,
M.
Nada
,
M.
Uomoto
et al,
Phys. Status Solidi A
218
,
2000395
(
2020
).
43.
G. Y.
Lin
,
Y. Y.
An
,
H. K.
Ding
et al,
Nanophotonics
12
(
2
),
219
228
(
2023
).
You do not currently have access to this content.