In this review, we introduce a developing qubit platform: floating-electron-based qubits. Electrons floating in a vacuum above the surface of liquid helium or solid neon emerge as promising candidates for qubits, especially due to their expected long coherence times. Despite being in the early stages, a variety of recent experiments from different groups have shown substantial potential in this role. We survey a range of theoretical proposals and recent experiments, primarily focusing on the use of the spin state as the qubit state, wherein the spin and charge states are hybridized. Throughout these proposals and experiments, the charge state is coupled to an LC resonator, which facilitates both the control and readout mechanisms for the spin state via an artificially introduced spin–charge coupling.

1.
M. W.
Cole
and
M. H.
Cohen
, “
Image-potential-induced surface bands in insulators
,”
Phys. Rev. Lett.
23
,
1238
1241
(
1969
).
2.
V.
Shikin
, “
Motion of helium ions near a vapor-liquid surface
,”
Sov. Phys. JETP
31
,
936
(
1970
), http://www.jetp.ras.ru/cgi-bin/e/index/e/31/5/p936?a=list.
3.
R. S.
Crandall
and
R.
Williams
, “
Properties of electron surface states on liquid helium
,”
Phys. Rev. A
5
,
2183
2190
(
1972
).
4.
K.
Kajita
, “
Wigner crystallization of two dimensional electrons formed on the surface of solid neon
,”
J. Phys. Soc. Jpn.
54
,
4092
4095
(
1985
).
5.
K.
Kajita
, “
Stability of electrons on thin helium film-solid neon system—Surface electrons and bubble electrons
,”
J. Phys. Soc. Jpn.
52
,
372
375
(
1983
).
6.
Y.
Monarkha
and
K.
Kono
, “
Two-dimensional interface electron systems
,” in
Two-Dimensional Coulomb Liquids and Solids
(
Springer
,
Berlin/Heidelberg
,
2004
), pp.
1
63
.
7.
V. V.
Zav'yalov
and
I. I.
Smol'yaninov
, “
Quantum refraction in gaseous HP, DZ, Ne, and He for electrons levitating above the surface of crystalline hydrogen, deuterium, and neon
,”
Sov. Phys. JETP
67
,
171
(
1988
), http://jetp.ras.ru/cgi-bin/e/index/e/67/1/p171?a=list.
8.
S. A.
Lyon
, “
Spin-based quantum computing using electrons on liquid helium
,”
Phys. Rev. A
74
,
052338
(
2006
).
9.
F. R.
Bradbury
,
M.
Takita
,
T. M.
Gurrieri
,
K. J.
Wilkel
,
K.
Eng
,
M. S.
Carroll
, and
S. A.
Lyon
, “
Efficient clocked electron transfer on superfluid helium
,”
Phys. Rev. Lett.
107
,
266803
(
2011
).
10.
G.
Sabouret
,
F. R.
Bradbury
,
S.
Shankar
,
J. A.
Bert
, and
S. A.
Lyon
, “
Signal and charge transfer efficiency of few electrons clocked on microscopic superfluid helium channels
,”
Appl. Phys. Lett.
92
,
082104
(
2008
).
11.
D. I.
Schuster
,
A.
Fragner
,
M. I.
Dykman
,
S. A.
Lyon
, and
R. J.
Schoelkopf
, “
Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics
,”
Phys. Rev. Lett.
105
,
040503
(
2010
).
12.
G.
Koolstra
,
G.
Yang
, and
D. I.
Schuster
, “
Coupling a single electron on superfluid helium to a superconducting resonator
,”
Nat. Commun.
10
,
5323
(
2019
).
13.
X.
Zhou
,
G.
Koolstra
,
X.
Zhang
,
G.
Yang
,
X.
Han
,
B.
Dizdar
,
X.
Li
,
R.
Divan
,
W.
Guo
,
K. W.
Murch
,
D. I.
Schuster
, and
D.
Jin
, “
Single electrons on solid neon as a solid-state qubit platform
,”
Nature
605
,
46
50
(
2022
).
14.
X.
Zhou
,
X.
Li
,
Q.
Chen
,
G.
Koolstra
,
G.
Yang
,
B.
Dizdar
,
Y.
Huang
,
C. S.
Wang
,
X.
Han
,
X.
Zhang
et al, “
Electron charge qubit with 0.1 millisecond coherence time
,”
Nat. Phys.
20
,
116
117
(
2023
).
15.
A. A.
Clerk
,
K. W.
Lehnert
,
P.
Bertet
,
J. R.
Petta
, and
Y.
Nakamura
, “
Hybrid quantum systems with circuit quantum electrodynamics
,”
Nat. Phys.
16
,
257
267
(
2020
).
16.
P. M.
Platzman
and
M. I.
Dykman
, “
Quantum computing with electrons floating on liquid helium
,”
Science
284
,
1967
1969
(
1999
).
17.
G.
Papageorgiou
,
P.
Glasson
,
K.
Harrabi
,
V.
Antonov
,
E.
Collin
,
P.
Fozooni
,
P. G.
Frayne
,
M. J.
Lea
,
D. G.
Rees
, and
Y.
Mukharsky
, “
Counting individual trapped electrons on liquid helium
,”
Appl. Phys. Lett.
86
,
153106
(
2005
).
18.
P.
Glasson
,
G.
Papageorgiou
,
K.
Harrabi
,
D. G.
Rees
,
V.
Antonov
,
E.
Collin
,
P.
Fozooni
,
P. G.
Frayne
,
Y.
Mukharsky
, and
M. J.
Lea
, “
Trapping single electrons on liquid helium
,”
J. Phys. Chem. Solids
66
,
1539
1543
(
2005
).
19.
E.
Rousseau
,
Y.
Mukharsky
,
D.
Ponarine
,
O.
Avenel
, and
E.
Varoquaux
, “
Trapping electrons in electrostatic traps over the surface of 4He
,”
J. Low Temp. Phys.
148
,
193
197
(
2007
).
20.
D.
Jin
, “
Quantum electronics and optics at the interface of solid neon and superfluid helium
,”
Quantum Sci. Technol.
5
,
035003
(
2020
).
21.
In atomic physics, a Rydberg state refers to a state of an atom or molecule in which one of the electrons occupies a high principal quantum number orbital. However, in the field of electrons on helium, the ground state is also often called a Rydberg state.
22.
M. I.
Dykman
,
P. M.
Platzman
, and
P.
Seddighrad
, “
Qubits with electrons on liquid helium
,”
Phys. Rev. B
67
,
155402
(
2003
).
23.
E.
Kawakami
,
J.
Chen
,
M.
Benito
, and
D.
Konstantinov
, “
Blueprint for quantum computing using electrons on helium
,”
Phys. Rev. Appl.
20
,
054022
(
2023
).
24.
M.
Lea
,
P.
Frayne
, and
Y.
Mukharsky
, “
Could we quantum compute with electrons on helium?
,”
Fortschr. Phys.
48
,
1109
1124
(
2000
).
25.
M. I.
Dykman
and
P. M.
Platzman
, “
Quantum computing using electrons floating on liquid helium
,”
Fortschr. Phys.
48
,
1095
1108
(
2000
).
26.
C. C.
Grimes
and
T. R.
Brown
, “
Direct spectroscopic observation of electrons in image-potential states outside liquid helium
,”
Phys. Rev. Lett.
32
,
280
283
(
1974
).
27.
C. C.
Grimes
,
T. R.
Brown
,
M. L.
Burns
, and
C. L.
Zipfel
, “
Spectroscopy of electrons in image-potential-induced surface states outside liquid helium
,”
Phys. Rev. B
13
,
140
(
1976
).
28.
C. C.
Grimes
and
G.
Adams
, “
Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons
,”
Phys. Rev. Lett.
42
,
795
798
(
1979
).
29.
E.
Collin
,
W.
Bailey
,
P.
Fozooni
,
P. G.
Frayne
,
P.
Glasson
,
K.
Harrabi
, and
M. J.
Lea
, “
Temperature-dependent energy levels of electrons on liquid helium
,”
Phys. Rev. B
96
,
235427
(
2017
).
30.
D.
Konstantinov
,
H.
Isshiki
,
H.
Akimoto
,
K.
Shirahama
, and
K.
Kono
, “
Investigation of microwave absorption of surface-state electrons on liquid 3He
,”
J. Low Temp. Phys.
148
,
187
191
(
2007
).
31.
H.
Isshiki
,
D.
Konstantinov
,
H.
Akimoto
,
K.
Shirahama
, and
K.
Kono
, “
Microwave absorption of surface-state electrons on liquid 3He
,”
J. Phys. Soc. Jpn.
76
,
094704
(
2007
).
32.
D.
Konstantinov
,
H.
Isshiki
,
H.
Akimoto
,
K.
Shirahama
,
Y.
Monarkha
, and
K.
Kono
, “
Microwave-absorption-induced heating of surface state electrons on liquid 3He
,”
J. Phys. Soc. Jpn.
77
,
034705
(
2008
).
33.
E.
Kawakami
,
A.
Elarabi
, and
D.
Konstantinov
, “
Image-charge detection of the Rydberg states of surface electrons on liquid helium
,”
Phys. Rev. Lett.
123
,
086801
(
2019
).
34.
Y. P.
Monarkha
and
S. S.
Sokolov
, “
Decay rate of the excited states of surface electrons over liquid helium
,”
J. Low Temp. Phys.
148
,
157
161
(
2007
).
35.
Y. P.
Monarkha
,
S. S.
Sokolov
,
A. V.
Smorodin
, and
N.
Studart
, “
Decay of excited surface electron states in liquid helium and related relaxation phenomena induced by short-wavelength ripplons
,”
Low Temp. Phys.
36
,
565
575
(
2010
).
36.
E.
Kawakami
,
A.
Elarabi
, and
D.
Konstantinov
, “
Relaxation of the excited Rydberg states of surface electrons on liquid helium
,”
Phys. Rev. Lett.
126
,
106802
(
2021
).
37.
M.
Zhang
and
L. F.
Wei
, “
Spin-orbit couplings between distant electrons trapped individually on liquid helium
,”
Phys. Rev. B
86
,
205408
(
2012
).
38.
M. I.
Dykman
,
O.
Asban
,
Q.
Chen
,
D.
Jin
, and
S. A.
Lyon
, “
Spin dynamics in quantum dots on liquid helium
,”
Phys. Rev. B
107
,
035437
(
2023
).
39.
H.
Byeon
,
K.
Nasyedkin
,
J. R.
Lane
,
N. R.
Beysengulov
,
L.
Zhang
,
R.
Loloee
, and
J.
Pollanen
, “
Piezoacoustics for precision control of electrons floating on helium
,”
Nat. Commun.
12
,
4150
(
2021
).
40.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
, “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
,
709
711
(
2002
).
41.
C.
Monroe
,
R.
Raussendorf
,
A.
Ruthven
,
K. R.
Brown
,
P.
Maunz
,
L.-M.
Duan
, and
J.
Kim
, “
Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
,”
Phys. Rev. A
89
,
022317
(
2014
).
42.
T. A.
Baart
,
M.
Shafiei
,
T.
Fujita
,
C.
Reichl
,
W.
Wegscheider
, and
L. M. K.
Vandersypen
, “
Single-spin CCD
,”
Nat. Nanotechnol.
11
,
330
334
(
2016
).
43.
T.
Fujita
,
T. A.
Baart
,
C.
Reichl
,
W.
Wegscheider
, and
L. M. K.
Vandersypen
, “
Coherent shuttle of electron-spin states
,”
npj Quantum Inf.
3
,
22
(
2017
).
44.
A.
Mills
,
D.
Zajac
,
M.
Gullans
,
F.
Schupp
,
T.
Hazard
, and
J.
Petta
, “
Shuttling a single charge across a one-dimensional array of silicon quantum dots
,”
Nat. Commun.
10
,
1063
(
2019
).
45.
A.
Noiri
,
K.
Takeda
,
T.
Nakajima
,
T.
Kobayashi
,
A.
Sammak
,
G.
Scappucci
, and
S.
Tarucha
, “
A shuttling-based two-qubit logic gate for linking distant silicon quantum processors
,”
Nat. Commun.
13
,
5740
(
2022
).
46.
A.
Zwerver
,
S.
Amitonov
,
S.
de Snoo
,
M.
Mądzik
,
M.
Rimbach-Russ
,
A.
Sammak
,
G.
Scappucci
, and
L.
Vandersypen
, “
Shuttling an electron spin through a silicon quantum dot array
,”
PRX Quantum
4
,
030303
(
2023
).
47.
G.
Burkard
,
M. J.
Gullans
,
X.
Mi
, and
J. R.
Petta
, “
Superconductor–semiconductor hybrid-circuit quantum electrodynamics
,”
Nat. Rev. Phys.
2
,
129
140
(
2020
).
48.
P.
Harvey-Collard
,
J.
Dijkema
,
G.
Zheng
,
A.
Sammak
,
G.
Scappucci
, and
L. M. K.
Vandersypen
, “
Coherent spin-spin coupling mediated by virtual microwave photons
,”
Phys. Rev. X
12
,
021026
(
2022
).
49.
M.
Veldhorst
,
H. G. J.
Eenink
,
C. H.
Yang
, and
A. S.
Dzurak
, “
Silicon CMOS architecture for a spin-based quantum computer
,”
Nat. Commun.
8
,
1766
(
2017
).
50.
See https://irds.ieee.org/editions/2021/more-moore for “
IRDS 2021: More Moore.
51.
L.
Trifunovic
,
O.
Dial
,
M.
Trif
,
J. R.
Wootton
,
R.
Abebe
,
A.
Yacoby
, and
D.
Loss
, “
Long-distance spin-spin coupling via floating gates
,”
Phys. Rev. X
2
,
011006
(
2012
).
52.
L.
Trifunovic
,
F. L.
Pedrocchi
, and
D.
Loss
, “
Long-distance entanglement of spin qubits via ferromagnet
,”
Phys. Rev. X
3
,
041023
(
2013
).
53.
Unlike semiconductor qubits where electrons are located in a polarizable medium and the Coulomb interaction is reduced, here, the Coulomb interaction retains its strength in a vacuum. This ensures that the strength of the electric dipole–dipole interaction is sufficient to enable a rapid two-qubit gate operation, even with electron spacing as wide as 1 μm. While the electrodes underneath the electrons may produce a screening effect, these do not significantly diminish the electric dipole–dipole interaction strength. In fact, as detailed in Appendix F of Ref. 23, these interactions might be enhanced under certain conditions.
54.
D. J.
Ibberson
,
T.
Lundberg
,
J. A.
Haigh
,
L.
Hutin
,
B.
Bertrand
,
S.
Barraud
,
C.-M.
Lee
,
N. A.
Stelmashenko
,
G. A.
Oakes
,
L.
Cochrane
,
J. W. A.
Robinson
,
M.
Vinet
,
M. F.
Gonzalez-Zalba
, and
L. A.
Ibberson
, “
Large dispersive interaction between a CMOS double quantum dot and microwave photons
,”
PRX Quantum
2
,
020315
(
2021
).
55.
D.
Reilly
,
C.
Marcus
,
M.
Hanson
, and
A.
Gossard
, “
Fast single-charge sensing with a rf quantum point contact
,”
Appl. Phys. Lett.
91
,
162101
(
2007
).
56.
M. F.
Gonzalez-Zalba
,
S.
Barraud
,
A. J.
Ferguson
,
A. C.
Betz
, and
P.
Delsing
, “
Probing the limits of gate-based charge sensing
,”
Nat. Commun.
6
,
6084
(
2015
).
57.
F.
Vigneau
,
F.
Fedele
,
A.
Chatterjee
,
D.
Reilly
,
F.
Kuemmeth
,
F.
Gonzalez-Zalba
,
E.
Laird
, and
N.
Ares
, “
Probing quantum devices with radio-frequency reflectometry
,” (
2022
).
58.
Z.
He
, “
Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
463
,
250
267
(
2001
).
59.
I.
Ahmed
,
J. A.
Haigh
,
S.
Schaal
,
S.
Barraud
,
Y.
Zhu
,
C.-M.
Lee
,
M.
Amado
,
J. W. A.
Robinson
,
A.
Rossi
,
J. J. L.
Morton
, and
M. F.
Gonzalez-Zalba
, “
Radio-frequency capacitive gate-based sensing
,”
Phys. Rev. Appl.
10
,
014018
(
2018
).
60.
P.
Apostolidis
,
B. J.
Villis
,
J. F.
Chittock-Wood
,
A.
Baumgartner
,
V.
Vesterinen
,
S.
Simbierowicz
,
J.
Hassel
, and
M. R.
Buitelaar
, “
Quantum paraelectric varactors for radio-frequency measurements at mK temperatures
,” (
2020
).
61.
E.
Collin
,
W.
Bailey
,
P.
Fozooni
,
P. G.
Frayne
,
P.
Glasson
,
K.
Harrabi
,
M. J.
Lea
, and
G.
Papageorgiou
, “
Microwave saturation of the Rydberg states of electrons on helium
,”
Phys. Rev. Lett.
89
,
245301
(
2002
).
62.
S.
Zou
and
D.
Konstantinov
, “
Image-charge detection of the Rydberg transition of electrons on superfluid helium confined in a microchannel structure
,”
New J. Phys.
24
,
103026
(
2022
).
63.
This is analogous to the Pauli spin blockade in semiconductor quantum dots where the electron tunneling between the DQD is dependent on the spin state87 and using the aforementioned dispersive method on this blockade enabled spin state readout.88–90 
64.
G.
Koolstra
, “
Trapping a single electron on superfluid helium using a superconducting resonator
,” Ph.D. thesis (
The University of Chicago
,
2019
).
65.
E.
Olivieri
,
J.
Billard
,
M.
De Jesus
,
A.
Juillard
, and
A.
Leder
, “
Vibrations on pulse tube based dry dilution refrigerators for low noise measurements
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
858
,
73
79
(
2017
).
66.
A.
D'Addabbo
,
C.
Bucci
,
L.
Canonica
,
S.
Di Domizio
,
P.
Gorla
,
L.
Marini
,
A.
Nucciotti
,
I.
Nutini
,
C.
Rusconi
, and
B.
Welliver
, “
An active noise cancellation technique for the CUORE Pulse Tube cryocoolers
,”
Cryogenics
93
,
56
65
(
2018
).
67.
D.
Schmoranzer
,
A.
Luck
,
E.
Collin
, and
A.
Fefferman
, “
Cryogenic broadband vibration measurement on a cryogen-free dilution refrigerator
,”
Cryogenics
98
,
102
106
(
2019
).
68.
K.
Uhlig
, “
Dry dilution refrigerator with pulse tube shutoff option
,”
Cryogenics
130
,
103649
(
2023
).
69.
E.
Kawakami
,
P.
Scarlino
,
L. R.
Schreiber
,
J. R.
Prance
,
D. E.
Savage
,
M. G.
Lagally
,
M. A.
Eriksson
, and
L. M. K.
Vandersypen
, “
Excitation of a Si/SiGe quantum dot using an on-chip microwave antenna
,”
Appl. Phys. Lett.
103
,
132410
(
2013
).
70.
M.
Pioro-Ladrière
,
T.
Obata
,
Y.
Tokura
,
Y.-S.
Shin
,
T.
Kubo
,
K.
Yoshida
,
T.
Taniyama
, and
S.
Tarucha
, “
Electrically driven single-electron spin resonance in a slanting Zeeman field
,”
Nat. Phys.
4
,
776
779
(
2008
).
71.
K. C.
Nowack
,
F. H. L.
Koppens
,
Y. V.
Nazarov
, and
L. M. K.
Vandersypen
, “
Coherent control of a single electron spin with electric fields
,”
Science
318
,
1430
1433
(
2007
).
72.
Y.
Tokura
,
W. G.
van der Wiel
,
T.
Obata
, and
S.
Tarucha
, “
Coherent single electron spin control in a slanting Zeeman field
,”
Phys. Rev. Lett.
96
,
047202
(
2006
).
73.
M.
Pioro-Ladrière
,
T.
Obata
,
Y.
Tokura
,
Y.-S.
Shin
,
T.
Kubo
,
K.
Yoshida
,
T.
Taniyama
, and
S.
Tarucha
, “
Selective manipulation of electron spins with electric fields
,”
Prog. Theor. Phys. Suppl.
176
,
322
340
(
2008
).
74.
X.
Mi
,
M.
Benito
,
S.
Putz
,
D. M.
Zajac
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
A coherent spin-photon interface in silicon
,”
Nature
555
,
599
603
(
2018
).
75.
M.
Benito
,
X.
Mi
,
J. M.
Taylor
,
J. R.
Petta
, and
G.
Burkard
, “
Input-output theory for spin-photon coupling in Si double quantum dots
,”
Phys. Rev. B
96
,
235434
(
2017
).
76.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U. C.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L. M. K.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
1127
(
2018
).
77.
M. D.
Reed
,
B. R.
Johnson
,
A. A.
Houck
,
L.
DiCarlo
,
J. M.
Chow
,
D. I.
Schuster
,
L.
Frunzio
, and
R. J.
Schoelkopf
, “
Fast reset and suppressing spontaneous emission of a superconducting qubit
,”
Appl. Phys. Lett.
96
,
203110
(
2010
).
78.
E.
Jeffrey
,
D.
Sank
,
J. Y.
Mutus
,
T. C.
White
,
J.
Kelly
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
A.
Megrant
,
P. J.
O'Malley
,
C.
Neill
,
P.
Roushan
,
A.
Vainsencher
,
J.
Wenner
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Fast accurate state measurement with superconducting qubits
,”
Phys. Rev. Lett.
112
,
190504
(
2014
).
79.
N. T.
Bronn
,
Y.
Liu
,
J. B.
Hertzberg
,
A. D.
Córcoles
,
A. A.
Houck
,
J. M.
Gambetta
, and
J. M.
Chow
, “
Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
,”
Appl. Phys. Lett.
107
,
172601
(
2015
).
80.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, “
Circuit quantum electrodynamics
,”
Rev. Mod. Phys.
93
,
025005
(
2021
).
81.
X.
Hu
,
Y.-X.
Liu
, and
F.
Nori
, “
Strong coupling of a spin qubit to a superconducting stripline cavity
,”
Phys. Rev. B
86
,
035314
(
2012
).
82.
Due to the higher charging energy in a vacuum compared to that in a semiconductor, owing to the lower dielectric constant in a vacuum, the electrochemical potential for an electron in a double-well potential tends to be set higher than the interdot barrier. Also note that the potential that an electron experiences on solid neon is described as a ring-shaped potential in Ref. 91. In both scenarios, quantum tunneling is not expected to occur.
83.
Q.
Chen
,
I.
Martin
,
L.
Jiang
, and
D.
Jin
, “
Electron spin coherence on a solid neon surface
,”
Quantum Sci. Technol.
7
,
045016
(
2022
).
84.
F.
Beaudoin
,
D.
Lachance-Quirion
,
W. A.
Coish
, and
M.
Pioro-Ladrière
, “
Coupling a single electron spin to a microwave resonator: Controlling transverse and longitudinal couplings
,”
Nanotechnology
27
,
464003
(
2016
).
85.
A.
Blais
,
R.-S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
,”
Phys. Rev. A
69
,
062320
(
2004
).
86.
N.
Samkharadze
,
A.
Bruno
,
P.
Scarlino
,
G.
Zheng
,
D. P.
DiVincenzo
,
L.
DiCarlo
, and
L. M. K.
Vandersypen
, “
High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field
,”
Phys. Rev. Appl.
5
,
044004
(
2016
).
87.
K.
Ono
,
D. G.
Austing
,
Y.
Tokura
, and
S.
Tarucha
, “
Current rectification by Pauli exclusion in a weakly coupled double quantum dot system
,”
Science
297
,
1313
1317
(
2002
).
88.
G. A.
Oakes
,
V. N.
Ciriano-Tejel
,
D. F.
Wise
,
M. A.
Fogarty
,
T.
Lundberg
,
C.
Lainé
,
S.
Schaal
,
F.
Martins
,
D. J.
Ibberson
,
L.
Hutin
,
B.
Bertrand
,
N.
Stelmashenko
,
J. W. A.
Robinson
,
L.
Ibberson
,
A.
Hashim
,
I.
Siddiqi
,
A.
Lee
,
M.
Vinet
,
C. G.
Smith
,
J. J. L.
Morton
, and
M. F.
Gonzalez-Zalba
, “
Fast high-fidelity single-shot readout of spins in silicon using a single-electron box
,”
Phys. Rev. X
13
,
011023
(
2023
).
89.
V. N.
Ciriano-Tejel
,
M. A.
Fogarty
,
S.
Schaal
,
L.
Hutin
,
B.
Bertrand
,
L.
Ibberson
,
M. F.
Gonzalez-Zalba
,
J.
Li
,
Y.-M.
Niquet
,
M.
Vinet
, and
J. J. L.
Morton
, “
Spin readout of a CMOS quantum dot by gate reflectometry and spin-dependent tunneling
,”
PRX Quantum
2
,
010353
(
2021
).
90.
A.
Crippa
,
R.
Ezzouch
,
A.
Aprá
,
A.
Amisse
,
R.
Laviéville
,
L.
Hutin
,
B.
Bertrand
,
M.
Vinet
,
M.
Urdampilleta
,
T.
Meunier
,
M.
Sanquer
,
X.
Jehl
,
R.
Maurand
, and
S.
De Franceschi
, “
Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon
,”
Nat. Commun.
10
,
2776
(
2019
).
91.
T.
Kanai
,
D.
Jin
, and
W.
Guo
, “
Single-electron qubits based on ring-shaped surface states on solid neon
,” (
2023
).

Supplementary Material

You do not currently have access to this content.