Over the past two decades, piezoelectric energy harvesting systems have undergone extensive research, spanning from materials to devices and electronics. Recently, there has been a notable introduction of the term “self-powered sensors,” which essentially refers to conventional, older passive sensors, associated with piezoelectric (or triboelectric) nanogenerators. Unfortunately, neither approach has yet yielded a successful market example. The primary challenge seems to lie in the intermittent nature of ambient kinetic energy input to these harvesters, despite the high output power density of piezoelectric energy harvesters. This article emphasizes the concept of Energy-as-Data, holding promise for a potentially brighter future for commercializable piezoelectric energy harvesting systems. The key advantage offered by this concept is the substantial extension of battery life through the optimization of data acquisition protocols. This involves transitioning from the traditional passive sensing mode with a high sampling rate to an extremely low duty cycle. This transition allows the harvested energy, accumulated in an energy storage unit over a specific interval, to be translated into critical information regarding kinetic environmental changes during that period. The article also discusses the broader context that necessitates the Energy-as-Data concept, establishing it as one of the few viable pathways to cultivate specialized markets for piezoelectric energy harvesting.

1.
A.
Polman
,
M.
Knight
,
E. C.
Garnett
,
B.
Ehrler
, and
W. C.
Sinke
, “
Photovoltaic materials: Present efficiencies and future challenges
,”
Science
352
(
6283
),
aad4424
(
2016
).
2.
M.
Ishikiriyama
, Patent JPH08321642A (
1996
).
3.
F.-R.
Fan
,
Z.-Q.
Tian
, and
Z.
Lin Wang
, “
Flexible triboelectric generator
,”
Nano Energy
1
(
2
),
328
334
(
2012
).
4.
H. A.
Sodano
,
D. J.
Inman
, and
G.
Park
, “
Comparison of piezoelectric energy harvesting devices for recharging batteries
,”
J. Intell. Mater. Syst. Struct.
16
(
10
),
799
807
(
2005
).
5.
Z.
Yang
,
S.
Zhou
,
J.
Zu
, and
D.
Inman
, “
High-performance piezoelectric energy harvesters and their applications
,”
Joule
2
(
4
),
642
697
(
2018
).
6.
See
https://www.pavegen.com/en/case-studies for “
Case studies
” (accessed December 21,
2023
).
7.
C.
Webster
, Patent US11309769B2 (
2022
).
8.
9.
S.
Roberts
, Patent GB2435552A (
2007
).
10.
M.
Pukari
and
H.
Jokinen
, Patent US20120111072A1 (
2012
).
11.
See
https://www.iloq.com/en/ for “
Battery-free digital and mobile locking
” (accessed December 21,
2023
).
12.
See
https://piezo.com/collections/piezoelectric-energy-harvesters?_=pf&pf_t_quantity=quantity__1 for “
Piezoelectric energy harvester components
” (accessed December 21, 2023).
13.
H.
Kulah
,
N.
Goksu
, and
L.
Beker
, Patent US20140303688A1 (
2014
).
14.
G. Cire
, see https://Pronews.Cochlear.Com/Piezoelectric-Stimulation for “
What is piezoelectric stimulation and why does it matter?
” (accessed February 5, 2024).
15.
M. C.
Scharber
, “
Efficiency of emerging photovoltaic devices under indoor conditions
,”
Sol. RRL
8
(
2
),
2300811
(
2024
).
16.
S. R.
Anton
and
H. A.
Sodano
, “
A review of power harvesting using piezoelectric materials (2003–2006)
,”
Smart Mater. Struct.
16
(
3
),
R1
R21
(
2007
).
17.
X.
Ma
,
S.
Bader
, and
B.
Oelmann
, “
Power estimation for indoor light energy harvesting systems
,”
IEEE Trans. Instrum. Meas.
69
(
10
),
7513
7521
(
2020
).
18.
M.
Freitag
,
J.
Teuscher
,
Y.
Saygili
,
X.
Zhang
,
F.
Giordano
,
P.
Liska
,
J.
Hua
,
S. M.
Zakeeruddin
,
J.-E.
Moser
,
M.
Grätzel
, and
A.
Hagfeldt
, “
Dye-sensitized solar cells for efficient power generation under ambient lighting
,”
Nat. Photonics
11
(
6
),
372
378
(
2017
).
19.
M.
Safaei
,
H. A.
Sodano
, and
S. R.
Anton
, “
A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018)
,”
Smart Mater. Struct.
28
(
11
),
113001
(
2019
).
20.
T.
Kaushalya
,
M.
Littow
,
E.
Virta
,
T.
Ruotsalainen
,
J.
Juuti
, and
Y.
Bai
, “
Evaluation of charging efficiency for power management integrated circuits and their compatibility with indoor light energy harvesting devices for IoT sensors
,”
SSRN
(
2023
).
21.
Y.
Bai
,
H.
Jantunen
, and
J.
Juuti
, “
Energy harvesting research: The road from single source to multisource
,”
Adv. Mater.
30
(
34
),
1707271
(
2018
).
22.
Y.
Bai
,
J.
Palosaari
,
P.
Tofel
, and
J.
Juuti
, “
A single-material multi-source energy harvester, multifunctional sensor, and integrated harvester–sensor system—Demonstration of concept
,”
Energy Technol.
8
(
9
),
2000461
(
2020
).
23.
P.
Cahill
,
V.
Pakrashi
,
P.
Sun
,
A.
Mathewson
, and
S.
Nagarajaiah
, “
Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure
,”
Smart Struct. Syst.
21
,
287
303
(
2018
).
24.
F.
Okosun
,
P.
Cahill
,
B.
Hazra
, and
V.
Pakrashi
, “
Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors
,”
Eur. Phys. J. Spec. Top.
228
(
7
),
1659
1675
(
2019
).
25.
F.-R.
Fan
,
L.
Lin
,
G.
Zhu
,
W.
Wu
,
R.
Zhang
, and
Z. L.
Wang
, “
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
,”
Nano Lett.
12
(
6
),
3109
3114
(
2012
).
26.
Z. L.
Wang
,
J.
Chen
, and
L.
Lin
, “
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
,”
Energy Environ. Sci.
8
(
8
),
2250
2282
(
2015
).
27.
J.
Li
,
Y.
Zheng
,
J.
Qiu
,
W.
Niu
,
J.
Wu
,
H.
Cui
,
Y.
Zi
, and
X.
Li
, “
Triboelectric nanogenerator-based self-powered two-dimensional microfluidic system for biochemical reaction
,”
Nano Energy
119
,
109061
(
2024
).
28.
S.
Amini
,
R. F. S.
Muktar Ahmed
,
S. M.
Ankanathappa
, and
K.
Sannathammegowda
, “
Polyvinyl alcohol-based economical triboelectric nanogenerator for self-powered energy harvesting applications
,”
Nanotechnology
35
(
3
),
035403
(
2024
).
29.
Y.
Bai
,
P.
Tofel
,
Z.
Hadas
,
J.
Smilek
,
P.
Losak
,
P.
Skarvada
, and
R.
Macku
, “
Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input
,”
Mech. Syst. Signal Process.
106
,
303
318
(
2018
).
30.
Pavegen
, see https://youtu.be/opd1jg8mbqu for “
World's first smart street, London WC1
” (accessed December 12, 2023).
31.
J.
Palosaari
,
E.
Virta
,
M.
Miinala
, and
Y.
Bai
, in
Nordic Conference on Digital Health and Wireless Solutions
(
Springer
,
Oulu
,
2024
).
32.
M.
Hatami
,
M.
Leinonen
, and
M.
Codreanu
, in
IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)
,
2022
.
33.
M.
Hatami
,
M.
Leinonen
,
Z.
Chen
,
N.
Pappas
, and
M.
Codreanu
, “
On-demand AoI minimization in resource-constrained cache-enabled IoT networks with energy harvesting sensors
,”
IEEE Trans. Commun.
70
(
11
),
7446
7463
(
2022
).
34.
Internet of Things (IoT) Predictions Outlook
(
Frost & Sullivan
,
2022
).
35.
2022 Update - Total Internet of Things (IoT) Device Forecast 2018–2027
(Frost & Sullivan, 2022).
You do not currently have access to this content.