Enhancing the detection limit in protein analysis is essential for a wide range of biomedical applications. In typical fluorescent protein assays, this limit is constrained by the detection capacity of the photon detector. Here, we develop an approach that significantly enhances the protein detection threshold by using microscale isoelectric focusing implemented directly at the detection site on a protein sensor chip. We demonstrate that by electrically generating a localized pH environment within a radius of ∼60 μm, protein molecules can be concentrated within this range and be detected at levels over four times lower than those achieved by measurements without on-chip isoelectric focusing. We find that this detection-limit enhancement results from a dual effect: the concentrating of the protein molecules and a reduction in the diffusion-induced fluctuation. Our approach offers a simple, yet highly effective ultra-low-power all-electronic solution for substantially improving protein analysis detection limits for diverse applications, including healthcare, clinical diagnostics, and therapeutics.

1.
H.
Zhang
,
Q.
Zhao
,
X.-F.
Li
, and
X. C.
Le
,
Analyst
132
(
8
),
724
737
(
2007
).
2.
K.
Blennow
,
B.
Dubois
,
A. M.
Fagan
,
P.
Lewczuk
,
M. J.
De Leon
, and
H.
Hampel
,
Alzheimer's Dementia
11
(
1
),
58
69
(
2015
).
3.
K. L.
Ong
,
R. W. S.
Chung
,
N.
Hui
,
K.
Festin
,
A. K.
Lundberg
,
K.-A.
Rye
,
L.
Jonasson
, and
M.
Kristenson
,
Am. J. Cardiol.
125
(
4
),
542
548
(
2020
).
4.
J.
Tkac
,
V.
Gajdosova
,
S.
Hroncekova
,
T.
Bertok
,
M.
Hires
,
E.
Jane
,
L.
Lorencova
, and
P.
Kasak
,
J. R. Soc. Interface Focus
9
(
2
),
20180077
(
2019
).
5.
J.
Hernández
and
I. M.
Thompson
,
Cancer
101
(
5
),
894
904
(
2004
).
6.
Z.
Petrášek
and
P.
Schwille
,
J. R Soc. Interface
6
(
Suppl 1
),
S15
S25
(
2009
).
7.
H.
Mattoussi
,
J. M.
Mauro
,
E. R.
Goldman
,
G. P.
Anderson
,
V. C.
Sundar
,
F. V.
Mikulec
, and
M. G.
Bawendi
,
J. Am. Chem. Soc.
122
(
49
),
12142
12150
(
2000
).
8.
S. W.
Thomas
,
G. D.
Joly
, and
T. M.
Swager
,
Chem. Rev.
107
(
4
),
1339
1386
(
2007
).
9.
D.
Razansky
,
M.
Distel
,
C.
Vinegoni
,
R.
Ma
,
N.
Perrimon
,
R. W.
Köster
, and
V.
Ntziachristos
,
Nat. Photonics
3
(
7
),
412
417
(
2009
).
10.
A.
Dorfman
,
N.
Kumar
, and
J-i
Hahm
,
Adv. Mater.
18
(
20
),
2685
2690
(
2006
).
11.
X.
Ji
,
C.
Xiao
,
W.-F.
Lau
,
J.
Li
, and
J.
Fu
,
Biosens. Bioelectron.
82
,
240
247
(
2016
).
12.
A. E.
Herr
,
J. I.
Molho
,
K. A.
Drouvalakis
,
J. C.
Mikkelsen
,
P. J.
Utz
,
J. G.
Santiago
, and
T. W.
Kenny
,
Anal. Chem.
75
(
5
),
1180
1187
(
2003
).
13.
S. Q.
Tia
,
K.
Brown
,
D.
Chen
, and
A. E.
Herr
,
Anal. Chem.
85
(
5
),
2882
2890
(
2013
).
14.
G. J.
Sommer
and
A. V.
Hatch
,
Electrophoresis.
30
(
5
),
742
757
(
2009
).
15.
X.
Fan
,
X.
Zhang
, and
J.
Ping
,
ACS Nano
16
(
7
),
10852
10858
(
2022
).
16.
K.
Macounová
,
C. R.
Cabrera
, and
P.
Yager
,
Anal. Chem.
73
(
7
),
1627
1633
(
2001
).
17.
J.
Wen
,
J. W.
Albrecht
, and
K. F.
Jensen
,
Electrophoresis.
31
(
10
),
1606
1614
(
2010
).
18.
H.
Cui
,
K.
Horiuchi
,
P.
Dutta
, and
C. F.
Ivory
,
Anal. Chem.
77
(
5
),
1303
1309
(
2005
).
19.
S.
Yu
,
C.
Yan
,
X.
Hu
,
B.
He
,
Y.
Jiang
, and
Q.
He
,
Anal. Bioanal. Chem.
411
,
5415
5422
(
2019
).
20.
N.
Panchuk-Voloshina
,
R. P.
Haugland
,
J.
Bishop-Stewart
,
M. K.
Bhalgat
,
P. J.
Millard
,
F.
Mao
,
W.-Y.
Leung
, and
R. P.
Haugland
,
J. Histochem. Cytochem.
47
(
9
),
1179
1188
(
1999
).
21.
Y.
Chen
,
J. D.
Müller
,
P. T.
So
, and
E.
Gratton
,
Biophys. J.
77
(
1
),
553
567
(
1999
).
22.
H.
Golnabi
,
M.
Matloob
,
M.
Bahar
, and
M.
Sharifian
,
Iran. Phys. J.
3
(
2
),
24
28
(
2009
), available at https://www.sid.ir/FileServer/JE/134220090205.

Supplementary Material

You do not currently have access to this content.