Ultrawide bandgap heterojunction p–n diodes with polarization-induced AlGaN p-type layers are demonstrated using plasma-assisted molecular beam epitaxy on bulk AlN substrates. Current–voltage characteristics show a turn-on voltage of V bi 5.5 V, a minimum room temperature ideality factor of η 1.63, and more than 12 orders of current modulation at room temperature. A stable current operation of the ultrawide bandgap semiconductor diode is measured up to a temperature of 300 °C. The one-sided n+–p heterojunction diode design enables a direct measurement of the spatial distribution of polarization-induced mobile hole density in the graded AlGaN layer from the capacitance–voltage profile. The measured average mobile hole density is p 5.7 × 10 17 cm−3, in close agreement with what is theoretically expected from distributed polarization doping. Light emission peaked at 260 nm (4.78 eV) observed in electroluminescence corresponds to interband radiative recombination in the n+ AlGaN layer. A much weaker deep-level emission band observed at 3.4 eV is attributed to cation-vacancy and silicon complexes in the heavily Si-doped AlGaN layer. These results demonstrate that distributed polarization doping enables ultrawide bandgap semiconductor heterojunction p–n diodes that have wide applications ranging from power electronics to deep-ultraviolet photonics. These devices can operate at high temperatures and in harsh environments.

1.
S.
Brochen
,
J.
Brault
,
S.
Chenot
,
A.
Dussaigne
,
M.
Leroux
, and
B.
Damilano
, “
Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy
,”
Appl. Phys. Lett.
103
,
032102
(
2013
).
2.
W.
Götz
,
N. M.
Johnson
,
J.
Walker
,
D. P.
Bour
, and
R. A.
Street
, “
Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition
,”
Appl. Phys. Lett.
68
,
667
669
(
1996
).
3.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
, “
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres
,”
Nature
441
,
325
328
(
2006
).
4.
H.
Ahmad
,
J.
Lindemuth
,
Z.
Engel
,
C. M.
Matthews
,
T. M.
McCrone
, and
W. A.
Doolittle
, “
Substantial P-type conductivity of AlN achieved via beryllium doping
,”
Adv. Mater.
33
,
2104497
(
2021
).
5.
R.
Ishii
,
A.
Yoshikawa
,
M.
Funato
, and
Y.
Kawakami
, “
Revisiting the substitutional Mg acceptor binding energy of AlN
,”
Phys. Rev. B
108
,
035205
(
2023
).
6.
J. H.
Park
,
D. Y.
Kim
,
E. F.
Schubert
,
J.
Cho
, and
J. K.
Kim
, “
Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes
,”
ACS Energy Lett.
3
,
655
662
(
2018
).
7.
L. K.
Li
,
M. J.
Jurkovic
,
W. I.
Wang
,
J. M.
Van Hove
, and
P. P.
Chow
, “
Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy
,”
Appl. Phys. Lett.
76
,
1740
1742
(
2000
).
8.
D. S.
Green
,
E.
Haus
,
F.
Wu
,
L.
Chen
,
U. K.
Mishra
, and
J. S.
Speck
, “
Polarity control during molecular beam epitaxy growth of Mg-doped GaN
,”
J. Vac. Sci. Technol., B
21
,
1804
1811
(
2003
).
9.
M.
Hansen
,
L.
Chen
,
J.
Speck
, and
S.
DenBaars
, “
Observation of Mg-rich precipitates in the p-type doping of GaN-based laser diodes
,”
Phys. Status Solidi B
228
,
353
356
(
2001
).
10.
H.
Xing
,
D. S.
Green
,
H.
Yu
,
T.
Mates
,
P.
Kozodoy
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
, “
Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition
,”
Jpn. J. Appl. Phys., Part 1
42
,
50
(
2003
).
11.
S.
Figge
,
R.
Kröger
,
T.
Böttcher
,
P. L.
Ryder
, and
D.
Hommel
, “
Magnesium segregation and the formation of pyramidal defects in p-GaN
,”
Appl. Phys. Lett.
81
,
4748
4750
(
2002
).
12.
Y.
Ohba
and
A.
Hatano
, “
A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition
,”
J. Cryst. Growth
145
,
214
218
(
1994
).
13.
P.
Kozodoy
,
S. P.
DenBaars
, and
U. K.
Mishra
, “
Depletion region effects in Mg-doped GaN
,”
J. Appl. Phys.
87
,
770
775
(
2000
).
14.
M.
Martens
,
C.
Kuhn
,
T.
Simoneit
,
S.
Hagedorn
,
A.
Knauer
,
T.
Wernicke
,
M.
Weyers
, and
M.
Kneissl
, “
The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers
,”
Appl. Phys. Lett.
110
,
081103
(
2017
).
15.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
C.
Sasaoka
,
L. J.
Schowalter
, and
H.
Amano
, “
Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing
,”
Appl. Phys. Lett.
121
,
222103
(
2022
).
16.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
, “
Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection
,”
Appl. Phys. Express
15
,
041007
(
2022
).
17.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
, “
A 271.8 nm deep-ultraviolet laser diode for room temperature operation
,”
Appl. Phys. Express
12
,
124003
(
2019
).
18.
S.
Tanaka
,
Y.
Ogino
,
K.
Yamada
,
R.
Ogura
,
S.
Teramura
,
M.
Shimokawa
,
S.
Ishizuka
,
S.
Iwayama
,
K.
Sato
,
H.
Miyake
,
M.
Iwaya
,
T.
Takeuchi
, and
S.
Kamiyama
, “
Low-threshold-current (85 mA) of AlGaN-based UV-B laser diode with refractive-index waveguide structure
,”
Appl. Phys. Express
14
,
094009
(
2021
).
19.
K.
Lee
,
S.
johnsonadwaj
,
V.
Protasenko
,
H.
Xing
, and
D.
Jena
, “
Efficient InGaN p-contacts for deep-UV light emitting diodes
,” in
Device Research Conference (DRC)
(IEEE,
2019
), pp.
171
172
.
20.
T.
Kolbe
,
A.
Knauer
,
J.
Rass
,
H. K.
Cho
,
S.
Hagedorn
,
F.
Bilchenko
,
A.
Muhin
,
J.
Ruschel
,
M.
Kneissl
,
S.
Einfeldt
, and
M.
Weyers
, “
234 nm far-ultraviolet-C light-emitting diodes with polarization-doped hole injection layer
,”
Appl. Phys. Lett.
122
,
191101
(
2023
).
21.
T.
Kumabe
,
S.
Kawasaki
,
H.
Watanabe
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
, “
Space–charge profiles and carrier transport properties in dopant-free GaN-based p-n junction formed by distributed polarization doping
,”
Phys. Status Solidi RRL
16
,
2200127
(
2022
).
22.
K.
Nomoto
,
W.
Li
,
B.
Song
,
Z.
Hu
,
M.
Zhu
,
M.
Qi
,
V.
Protasenko
,
Z.
Zhang
,
M.
Pan
,
X.
Gao
,
H.
Marchand
,
W.
Johnson
,
D.
Jena
, and
H. G.
Xing
, “
Distributed polarization-doped GaN p–n diodes with near-unity ideality factor and avalanche breakdown voltage of 1.25 kV
,”
Appl. Phys. Lett.
120
,
122111
(
2022
).
23.
Z.
Hu
,
K.
Nomoto
,
B.
Song
,
M.
Zhu
,
M.
Qi
,
M.
Pan
,
X.
Gao
,
V.
Protasenko
,
D.
Jena
, and
H. G.
Xing
, “
Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown
,”
Appl. Phys. Lett.
107
,
243501
(
2015
).
24.
S.
Li
,
M.
Ware
,
J.
Wu
,
P.
Minor
,
Z.
Wang
,
Z.
Wu
,
Y.
Jiang
, and
G. J.
Salamo
, “
Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN
,”
Appl. Phys. Lett.
101
,
122103
(
2012
).
25.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
, “
Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures
,”
Science
327
,
60
64
(
2010
).
26.
A.
Ahmad
,
P.
Strak
,
P.
Kempisty
,
K.
Sakowski
,
J.
Piechota
,
Y.
Kangawa
,
I.
Grzegory
,
M.
Leszczynski
,
Z. R.
Zytkiewicz
,
G.
Muziol
,
E.
Monroy
,
A.
Kaminska
, and
S.
Krukowski
, “
Polarization doping—Ab initio verification of the concept: Charge conservation and nonlocality
,”
J. Appl. Phys.
132
,
064301
(
2022
).
27.
R.
Chaudhuri
,
S. J.
Bader
,
Z.
Chen
,
D. A.
Muller
,
H. G.
Xing
, and
D.
Jena
, “
A polarization-induced 2D hole gas in undoped gallium nitride quantum wells
,”
Science
365
,
1454
1457
(
2019
).
28.
Z.
Zhang
,
M.
Kushimoto
,
M.
Horita
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
, “
Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes
,”
Appl. Phys. Lett.
117
,
152104
(
2020
).
29.
Z.
Zhang
,
J.
Encomendero
,
R.
Chaudhuri
,
Y.
Cho
,
V.
Protasenko
,
K.
Nomoto
,
K.
Lee
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
, “
Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AlN substrates
,”
Appl. Phys. Lett.
119
,
162104
(
2021
).
30.
Y.
Cho
,
C. S.
Chang
,
K.
Lee
,
M.
Gong
,
K.
Nomoto
,
M.
Toita
,
L. J.
Schowalter
,
D. A.
Muller
,
D.
Jena
, and
H. G.
Xing
, “
Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning
,”
Appl. Phys. Lett.
116
,
172106
(
2020
).
31.
K.
Lee
,
Y.
Cho
,
L. J.
Schowalter
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
, “
Surface control and MBE growth diagram for homoepitaxy on single-crystal AlN substrates
,”
Appl. Phys. Lett.
116
,
262102
(
2020
).
32.
S. M.
Sze
,
Y.
Li
, and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2021
).
33.
J. M.
Shah
,
Y.-L.
Li
,
T.
Gessmann
, and
E. F.
Schubert
, “
Experimental analysis and theoretical model for anomalously high ideality factors (n  2.0) in AlGaN/GaN p-n junction diodes
,”
J. Appl. Phys.
94
,
2627
2630
(
2003
).
34.
M. S.
Ferdous
,
X.
Wang
,
M. N.
Fairchild
, and
S. D.
Hersee
, “
Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes
,”
Appl. Phys. Lett.
91
,
231107
(
2007
).
35.
N. F.
Mott
, “
Conduction in non-crystalline materials
,”
Philos. Mag. A
19
,
835
852
(
1969
).
36.
C. G.
Moe
,
M. L.
Reed
,
G. A.
Garrett
,
A. V.
Sampath
,
T.
Alexander
,
H.
Shen
,
M.
Wraback
,
Y.
Bilenko
,
M.
Shatalov
,
J.
Yang
,
W.
Sun
,
J.
Deng
, and
R.
Gaska
, “
Current-induced degradation of high performance deep ultraviolet light emitting diodes
,”
Appl. Phys. Lett.
96
,
213512
(
2010
).
37.
Z.
Gong
,
M.
Gaevski
,
V.
Adivarahan
,
W.
Sun
,
M.
Shatalov
, and
M.
Asif Khan
, “
Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire
,”
Appl. Phys. Lett.
88
,
121106
(
2006
).
38.
L.
Stauffer
, “
Fundamentals of semiconductor C-V measurements
,”
Eval. Eng.
47
,
20
24
(
2008
).
39.
C.
Wood
and
D.
Jena
,
Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications
(
Springer Science & Business Media
,
2007
).
40.
M.
Feneberg
,
M. F.
Romero
,
M.
Röppischer
,
C.
Cobet
,
N.
Esser
,
B.
Neuschl
,
K.
Thonke
,
M.
Bickermann
, and
R.
Goldhahn
, “
Anisotropic absorption and emission of bulk ( 1 1 ¯ 00 ) AlN
,”
Phys. Rev. B
87
,
235209
(
2013
).
41.
M.
Feneberg
,
S.
Osterburg
,
K.
Lange
,
C.
Lidig
,
B.
Garke
,
R.
Goldhahn
,
E.
Richter
,
C.
Netzel
,
M. D.
Neumann
,
N.
Esser
,
S.
Fritze
,
H.
Witte
,
J.
Bläsing
,
A.
Dadgar
, and
A.
Krost
, “
Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm–3
,”
Phys. Rev. B
90
,
075203
(
2014
).
42.
K.
Kanisawa
,
M. J.
Butcher
,
H.
Yamaguchi
, and
Y.
Hirayama
, “
Imaging of Friedel oscillation patterns of two-dimensionally accumulated electrons at epitaxially grown InAs(111) A surfaces
,”
Phys. Rev. Lett.
86
,
3384
3387
(
2001
).
43.
M. C. M. M.
van der Wielen
,
A. J. A.
van Roij
, and
H.
van Kempen
, “
Direct observation of Friedel oscillations around incorporated SiGa dopants in GaAs by low-temperature scanning tunneling microscopy
,”
Phys. Rev. Lett.
76
,
1075
1078
(
1996
).
44.
See https://www.str-soft.com/devices/silense/ for SiLENSe, STR Group.
45.
S. F.
Chichibu
,
H.
Miyake
,
Y.
Ishikawa
,
M.
Tashiro
,
T.
Ohtomo
,
K.
Furusawa
,
K.
Hazu
,
K.
Hiramatsu
, and
A.
Uedono
, “
Impacts of Si-doping and resultant cation vacancy formation on the luminescence dynamics for the near-band-edge emission of Al0.6Ga0.4N films grown on AlN templates by metalorganic vapor phase epitaxy
,”
J. Appl. Phys.
113
,
213506
(
2013
).
46.
J. H.
Kim
,
P.
Bagheri
,
R.
Kirste
,
P.
Reddy
,
R.
Collazo
, and
Z.
Sitar
, “
Tracking of point defects in the full compositional range of AlGaN via photoluminescence spectroscopy
,”
Phys. Status Solidi A
220
,
2200390
(
2023
).
47.
I.
Prozheev
,
F.
Mehnke
,
T.
Wernicke
,
M.
Kneissl
, and
F.
Tuomisto
, “
Electrical compensation and cation vacancies in Al rich Si-doped AlGaN
,”
Appl. Phys. Lett.
117
,
142103
(
2020
).
48.
L.
van Deurzen
,
J.
Singhal
,
J.
Encomendero
,
N.
Pieczulewski
,
C. S.
Chang
,
Y.
Cho
,
D. A.
Muller
,
H. G.
Xing
,
D.
Jena
,
O.
Brandt
, and
J.
Lähnemann
, “
Excitonic and deep-level emission from N- and Al-polar homoepitaxial AlN grown by molecular beam epitaxy
,”
APL Mater.
11
,
081109
(
2023
).
49.
M.
Kaneko
,
H.
Okumura
,
R.
Ishii
,
M.
Funato
,
Y.
Kawakami
,
T.
Kimoto
, and
J.
Suda
, “
Optical properties of highly strained AlN coherently grown on 6H-SiC(0001)
,”
Appl. Phys. Express
6
,
062604
(
2013
).
50.
L.
van Deurzen
,
R.
Page
,
V.
Protasenko
,
K.
Nomoto
,
H. G.
Xing
, and
D.
Jena
, “
Optically pumped deep-UV multimode lasing in AlGaN double heterostructure grown by molecular beam homoepitaxy
,”
AIP Adv.
12
,
035023
(
2022
).
51.
V. N.
Jmerik
,
E. V.
Lutsenko
, and
S. V.
Ivanov
, “
Plasma-assisted molecular beam epitaxy of AlGaN heterostructures for deep-ultraviolet optically pumped lasers
,”
Phys. Status Solidi A
210
,
439
450
(
2013
).
You do not currently have access to this content.