Synthetic nitrogen-doped diamond single crystals have various high-tech applications, but their electronic properties have not been sufficiently studied. In this research, we investigated temperature dependencies in the range T = (550–1143) K of the electrical resistivity and Hall mobility in synthetic single-crystal Ib-type diamonds doped with nitrogen during growth. A series of experimental samples were cut from diamond crystals grown by temperature gradient high-pressure high-temperature (TG-HPHT) and chemical vapor deposition (CVD) methods. They contain (0.085–6.5) × 1019 cm−3 single substitutional nitrogen atoms (C-centers) as measured by optical spectrometry methods. The Hall mobility of free electrons decreases from 600 to 150 cm2 V−1 s−1 in the CVD grown sample with the lowest N content and from 300 to 100 cm2 V−1 s−1 in highly doped HPHT grown samples in the temperature range of 550–900 K. At T = (900–1100) K, the mobility decreases to 50 cm2 V−1 s−1 in highly doped samples. The activation energies of electrical conductivity Ea and impurity-to-band energies of nitrogen donors ED decrease with increasing N concentration in the ranges (1.55–1.32) and (1.63–1.33) eV, respectively. The lowest compensation ratio k ∼ 1% in the moderately doped CVD diamond is unique for n-type diamonds. Typical values of k in highly N-doped crystals are in the range of 10%–20%, facilitating the use of N-doped diamonds in durable high-temperature electronic devices.

1.
Chapter 2—Semiconductor diamond
,” in
Ultra-wide Bandgap Semiconductor Materials
, edited by
M.
Liao
,
B.
Shen
, and
Z.
Wang
(
Elsevier Inc.
,
2019
), pp.
111
263
, 479. ISBN 978-0-12-815468-7.
2.
Y. N.
Palyanov
,
IN.
Kupriyanov
,
A. F.
Khokhryakov
, and
V. G.
Ralchenko
, “
Chapter 17—Crystal growth of diamond
,” in
Handbook of Crystal Growth
, edited by
P.
Rudolph
(
Elsevier B.V.
,
2015
), ISBN 978-0-444-63303-3.
3.
Y.
Koizumi
,
H.
Umezawa
,
J.
Pernot
et al,
Power Electronics Device Applications of Diamond Semiconductors
, A volume in Woodhead Publishing Series in Electronic and Optical Materials (
Elsevier Ltd. Woodhead Publishing
,
2018
), pp.
99
189
.
4.
Q.
Liang
,
C.
Yan
, and
Y.
Mengetal
, “
Recent advances in high-growth rate single-crystal CVD diamond
,”
Diamond Relat. Mater.
18
,
698
703
(
2009
).
5.
C.
Yan
,
Y. K.
Vohra
,
H.
Mao
, and
R. J.
Hemley
, “
Very high growth rate chemical vapor deposition of single-crystal diamond
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
20
),
12523
12525
(
2002
).
6.
Y.
Borzdov
,
Y.
Pal'yanov
,
I.
Kupriyanov
et al, “
HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system
,”
Diamond Relat. Mater.
11
,
1863
(
2002
).
7.
Y. N.
Palyanov
,
Y. M.
Borzdov
,
A. F.
Khokhryakov
et al, “
Effect of nitrogen impurity on diamond crystal growth processes
,”
Cryst. Growth Des.
10
,
3169
(
2010
).
8.
M.
Katagiri
,
J.
Isoya
,
S.
Koizumi
et al, “
Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition
,”
Appl. Phys. Lett.
85
,
6365
6367
(
2004
).
9.
M. N. R.
Ashfold
,
J. P.
Goss
,
B. L.
Green
et al, “
Nitrogen in diamond
,”
Chem. Rev.
120
,
5745
(
2020
).
10.
U. F. S.
D'Haenens-Johansson
,
J. E.
Butler
, and
A. N.
Katrusha
, “
Synthesis of diamonds and their identifcation
,”
Rev. Mineral. Geochem.
88
,
689
(
2022
).
11.
A. M.
Zaitsev
,
Optical Properties of Diamond: A Data Handbook
(
Springer
,
Berlin, New York
,
2001
).
12.
J.
Amann
,
W.
Berg
,
V.
Blank
et al, “
Demonstration of self-seeding in a hard-X-ray free-electron laser
,”
Nat. Photonics
6
,
693
698
(
2012
).
13.
I.
Nam
,
C-K.
Min
,
B.
Oh
et al, “
High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range
,”
Nat. Photonics
15
,
435
(
2021
).
14.
S. N.
Polyakov
,
V. N.
Denisov
,
A. A.
Lomov
et al, “
Large-sized X-ray optics quality chemical vapor deposition diamond
,”
Phys. Status Solidi RRL
16
,
2200164
(
2022
).
15.
F. J.
Heremans
,
G. D.
Fuchs
,
C. F.
Wang
et al, “
Generation and transport of photoexcited electrons in single-crystal diamond
,”
Appl. Phys. Lett.
94
,
152102
(
2009
).
16.
J.
Pernot
,
C.
Tavares
,
E.
Gheeraert
et al, “
Hall electron mobility in diamond
,”
Appl. Phys. Lett.
89
,
122111
(
2006
).
17.
J.
Pernot
and
S.
Koizumi
, “
Electron mobility in phosphorous doped (111) homoepitaxial diamond
,”
Appl. Phys. Lett.
93
,
052105
(
2008
).
18.
I.
Stenger
,
M.-A.
Pinault-Thaury
,
T.
Kociniewski
et al, “
Impurity-to-band activation energy in phosphorus doped diamond
,”
J. Appl. Phys.
114
,
073711
(
2013
).
19.
H.
Kato
,
M.
Ogura
,
T.
Makino
et al, “
N-type control of single-crystal diamond films by ultra-lightly phosphorus doping
,”
Appl. Phys. Lett.
109
,
142102
(
2016
).
20.
I.
Stenger
,
M.-A.
Pinault-Thaury
,
N.
Temahuki
et al, “
Electron mobility in (100) homoepitaxial layers of phosphorus-doped diamond
,”
J. Appl. Phys.
129
,
105701
(
2021
).
21.
J.
Barzola-Quiquia
,
M.
Stiller
,
P. D.
Esquinazi
et al, “
Unconventional magnetization below 25 K in Nitrogen-doped diamond provides hints for the existence of superconductivity and superparamagnetism
,”
Sci. Rep.
9
,
8743
(
2019
).
22.
H.
Umezawa
, “
Recent advances in diamond power semiconductor devices
,”
Mater. Sci. Semicond. Process.
78
,
147
156
(
2018
).
23.
N.
Donato
,
N. C.
Rouger
,
J.
Pernot
et al, “
Diamond power devices: State of the art, modelling, figures of merit and future perspective
,”
J. Phys. D: Appl. Phys.
53
,
093001
(
2020
).
24.
J.
Ballestín-Fuertes
,
J.
Muñoz-Cruzado-Alba
,
J. F.
Sanz-Osorio
et al, “
Role of wide bandgap materials in power electronics for smart grids applications
,”
Electronics
10
,
677
(
2021
).
25.
M.
Kubovic
,
H.
El-Hajj
,
J. E.
Butler
, and
E.
Kohn
, “
Diamond merged diode
,”
Diamond Relat. Mater.
16
,
1033
(
2007
).
26.
T.
Matsumoto
,
T.
Mukose
, and
T.
Makino
, “
Diamond Schottky-pn diode using lightly nitrogen-doped layer
,”
Diamond Relat. Mater.
75
,
152
(
2017
).
27.
T.
Matsumoto
,
T.
Yamakawa
,
H.
Kato
et al, “
Fabrication of inversion p-channel MOSFET with a nitrogen-doped diamond body
,”
Appl. Phys. Lett.
119
,
242105
(
2021
).
28.
I. A.
Khramtsov
and
D.
Yu Fedyanin
, “
Superinjection in diamond homojunction p-i-n diodes
,”
Semicond. Sci. Technol.
34
,
03LT03
(
2019
).
29.
M.
Lobaev
,
D. B.
Radishev
,
S. A.
Bogdanov
,
A. L.
Vikharev
et al, “
Diamond p–i–n diode with nitrogen containing intrinsic region for the study of nitrogen-vacancy center electroluminescence
,”
Phys. Status Solidi RRL
14
,
2000347
(
2020
).
30.
A.
Savvin
,
A.
Dormidonov
,
E.
Smetanina
et al, “
NV diamond laser
,”
Nat. Commun.
12
,
7118
(
2021
).
31.
S. G.
Buga
,
N. V.
Kornilov
,
M. S.
Kuznetsov
et al, “
High temperature light emitting diamond pin diode based on nitrogen-vacancy luminescence centers
,”
Pisma v ZhTF (in Russian., English version Tech. Phys. Lett.)
50
(
5
),
39
(
2024
).
32.
S.
Pezzagna
and
J.
Meijer
, “
Quantum computer based on color centers in diamond
,”
Appl. Phys. Rev.
8
,
011308
(
2021
).
33.
S. V.
Bolshedvorskii
,
S. A.
Tarelkin
,
V. V.
Soshenko
et al, “
The study of the efficiency of nitrogen to nitrogen-vacancy (NV)-center conversion in high-nitrogen content samples
,”
Phys. Status Solidi RRL
17
,
2200415
(
2023
).
34.
S.
Salvatori
,
S.
Pettinato
,
M.
Girolami
,
D. M.
Trucchi
, and
M. C.
Rossi
, “
Improving the performance of HPHT-diamond detectors for pulsed X-ray dosimetry using the synchronous detection technique
,”
IEEE Trans. Electron Devices
70
(
5
),
2330
(
2023
).
35.
R. G.
Farrer
, “
On the substitutional nitrogen donor in diamond
,”
Solid State Commun.
7
,
685
(
1969
).
36.
R. G.
Farrer
, “
Electronic conduction phenomena in various kinds of diamond
,” Ph.D. thesis (
University of the Witwatersrand
,
Johannesburg
,
1975
), p.
96
.
37.
H. B.
Dyer
,
F. A.
Raal
,
L.
Du Preez
, and
J. H. N.
Loubser
, “
Optical absorption features associated with paramagnetic nitrogen in diamond
,”
Philos. Mag.
11
,
763
(
1965
).
38.
M.
Hasegawa
,
Y.
Yamamoto
,
H.
Watanabe
et al, “
Characterisation of nitrogen-implanted CVD homoepitaxial diamond
,”
Diamond. Relat. Mater.
13
,
600
(
2004
).
39.
E.
Baskin
,
A.
Reznik
,
D.
Saada
et al, “
Model for the defect-related electrical conductivity in ion-damaged diamond
,”
Phys. Rev. B
64
,
224110
(
2001
).
40.
D. D.
Prikhodko
,
S. G.
Pavlov
,
S. A.
Tarelkin
et al, “
Intracenter dipole transitions of a hydrogen-like boron acceptor in diamond: Oscillator strengths and line broadening
,”
Diamond Relat. Mater.
120
,
108629
(
2021
).
41.
T.
Luo
,
L.
Lindner
,
R.
Blinder
et al, “
Rapid determination of single substitutional nitrogen N0s concentration in diamond from UV-Vis spectroscopy
,”
Appl. Phys. Lett.
121
,
064002
(
2022
).
42.
J. S.
Blakemore
, in
Semiconductor Statistics
, edited by
H. K.
Henisch
(
Pergamon Press
,
1962
).
43.
N.
Naka
,
K.
Fukai
,
Y.
Handa
et al, “
Direct measurement via cyclotron resonance of the carrier effective masses in pristine diamond
,”
Phys. Rev. B
88
,
035205
(
2013
).
44.
G. L.
Pearson
and
J.
Bardeen
, “
Electrical properties of pure silicon and silicon alloys containing boron and phosphorus
,”
Phys. Rev.
75
,
865
(
1949
).

Supplementary Material

You do not currently have access to this content.