Amorphous nanomembranes play a crucial role in flexible electronics due to their ability to create intricate 3D structures through strain engineering. To better understand the formation of these structures, accurately mapping the local elastic strain distribution is essential. In this study, we conducted position-sensitive nanobeam electron diffraction investigations on various rolled-up amorphous nanomembranes. By analyzing the diffraction rings obtained from different locations on the amorphous samples, we extracted anisotropic structure information in reciprocal space and determined the local strain distributions in real space. Our analysis revealed that particle-assisted dry-released samples exhibited higher strain values than pure amorphous samples. This suggests that nanoparticles introduce additional strain through dewetting effects, thereby facilitating the formation of self-rolling 3D structures.

1.
B. D.
Gates
, “
Flexible electronics
,”
Science
323
(
5921
),
1566
1567
(
2009
).
2.
M.
Kaltenbrunner
,
T.
Sekitani
,
J.
Reeder
,
T.
Yokota
,
K.
Kuribara
,
T.
Tokuhara
,
M.
Drack
,
R.
Schwödiauer
,
I.
Graz
, and
S.
Bauer-Gogonea
, “
An ultra-lightweight design for imperceptible plastic electronics
,”
Nature
499
(
7459
),
458
463
(
2013
).
3.
F.
Faisal
,
Y.
Amin
,
Y.
Cho
, and
H.
Yoo
, “
Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications
,”
IEEE Trans. Antennas Propag.
67
(
6
),
4184
4188
(
2019
).
4.
Y.
Khan
,
A.
Thielens
,
S.
Muin
,
J.
Ting
,
C.
Baumbauer
, and
A. C.
Arias
, “
A new frontier of printed electronics: Flexible hybrid electronics
,”
Adv. Mater.
32
(
15
),
1905279
(
2020
).
5.
J. A.
Rogers
,
M. G.
Lagally
, and
R. G.
Nuzzo
, “
Synthesis, assembly and applications of semiconductor nanomembranes
,”
Nature
477
(
7362
),
45
53
(
2011
).
6.
A.
Nathan
,
A.
Ahnood
,
M. T.
Cole
,
S.
Lee
,
Y.
Suzuki
,
P.
Hiralal
,
F.
Bonaccorso
,
T.
Hasan
,
L.
Garcia-Gancedo
,
A.
Dyadyusha
,
S.
Haque
,
P.
Andrew
,
S.
Hofmann
,
J.
Moultrie
,
D.
Chu
,
A. J.
Flewitt
,
A. C.
Ferrari
,
M. J.
Kelly
,
J.
Robertson
,
G. A. J.
Amaratunga
, and
W. I.
Milne
, “
Flexible electronics: The next ubiquitous platform
,”
Proc. IEEE
100
,
1486
1517
(
2012
).
7.
D.
Corzo
,
G.
Tostado-Blázquez
, and
D.
Baran
Flexible electronics: Status, challenges and opportunities
,”
Front. Electron.
1
,
594003
(
2020
).
8.
S. R.
Forrest
, “
The path to ubiquitous and low-cost organic electronic appliances on plastic
,”
Nature
428
(
6986
),
911
918
(
2004
).
9.
K.
Zhang
,
J.-H.
Seo
,
W.
Zhou
, and
Z.
Ma
, “
Fast flexible electronics using transferrable silicon nanomembranes
,”
J. Phys. D
45
(
14
),
143001
(
2012
).
10.
H.
Sirringhaus
,
T.
Kawase
,
R. H.
Friend
,
T.
Shimoda
,
M.
Inbasekaran
,
W.
Wu
, and
E. P.
Woo
, “
High-resolution inkjet printing of all-polymer transistor circuits
,”
Science
290
(
5499
),
2123
2126
(
2000
).
11.
G. H.
Gelinck
,
H. E. A.
Huitema
,
E.
van Veenendaal
,
E.
Cantatore
,
L.
Schrijnemakers
,
J. B. P. H.
van der Putten
,
T. C. T.
Geuns
,
M.
Beenhakkers
,
J. B.
Giesbers
,
B.-H.
Huisman
,
E. J.
Meijer
,
E. M.
Benito
,
F. J.
Touwslager
,
A. W.
Marsman
,
B. J. E.
van Rens
, and
D. M.
de Leeuw
, “
Flexible active-matrix displays and shift registers based on solution-processed organic transistors
,”
Nat. Mater.
3
(
2
),
106
110
(
2004
).
12.
J.
Yoon
,
S.
Jo
,
I. S.
Chun
,
I.
Jung
,
H.-S.
Kim
,
M.
Meitl
,
E.
Menard
,
X.
Li
,
J. J.
Coleman
,
U.
Paik
, and
J. A.
Rogers
, “
GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
,”
Nature
465
(
7296
),
329
333
(
2010
).
13.
H.-X.
Ji
,
X.-L.
Wu
,
L.-Z.
Fan
,
C.
Krien
,
I.
Fiering
,
Y.-G.
Guo
,
Y.
Mei
, and
O. G.
Schmidt
, “
Self-wound composite nanomembranes as electrode materials for lithium ion batteries
,”
Adv. Mater.
22
(
41
),
4591
4595
(
2010
).
14.
J.
Wang
,
T.
Zhan
,
G.
Huang
,
X.
Cui
,
X.
Hu
, and
Y.
Mei
, “
Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes
,”
Opt. Express
20
(
17
),
18555
18567
(
2012
).
15.
E. J.
Smith
,
Z.
Liu
,
Y.
Mei
, and
O. G.
Schmidt
, “
Combined surface plasmon and classical waveguiding through metamaterial fiber design
,”
Nano Lett.
10
(
1
),
1
5
(
2010
).
16.
Y.
Mei
,
A. A.
Solovev
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines
,”
Chem. Soc. Rev.
40
(
5
),
2109
2119
(
2011
).
17.
A. A.
Solovev
,
W.
Xi
,
D. H.
Gracias
,
S. M.
Harazim
,
C.
Deneke
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Self-propelled nanotools
,”
ACS Nano
6
(
2
),
1751
1756
(
2012
).
18.
Y.
Mei
,
G.
Huang
,
A. A.
Solovev
,
E. B.
Ureña
,
I.
Mönch
,
F.
Ding
,
T.
Reindl
,
R. K. Y.
Fu
,
P. K.
Chu
, and
O. G.
Schmidt
, “
Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
,”
Adv. Mater.
20
(
21
),
4085
4090
(
2008
).
19.
R.
Bierwolf
,
M.
Hohenstein
,
F.
Phillipp
,
O.
Brandt
,
G. E.
Crook
, and
K.
Ploog
, “
Direct measurement of local lattice distortions in strained layer structures by HREM
,”
Ultramicroscopy
49
(
1
),
273
285
(
1993
).
20.
A.
Rosenauer
,
Transmission Electron Microscopy of Semiconductor Nanostructures: An Analysis of Composition and Strain State
(
Springer Science & Business Media
,
2003
).
21.
P. L.
Galindo
,
A.
Yáñez
,
J.
Pizarro
,
E.
Guerrero
,
T.
Ben
, and
S. I.
Molina
, in
Microscopy of Semiconducting Materials
, edited by
A. G.
Cullis
and
J. L.
Hutchison
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
191
194
.
22.
W.
Neumann
,
H.
Kirmse
,
I.
Häusler
, and
R.
Otto
, “
Quantitative high resolution transmission electron microscopy of nanostructured semiconductors
,”
J. Microsc.
223
(
3
),
200
204
(
2006
).
23.
F.
Hüe
,
M.
Hÿtch
,
H.
Bender
,
F.
Houdellier
, and
A.
Claverie
, “
Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy
,”
Phys. Rev. Lett.
100
(
15
),
156602
(
2008
).
24.
C. T.
Koch
,
V. B.
Özdöl
, and
P. A.
van Aken
, “
An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices
,”
Appl. Phys. Lett.
96
(
9
),
091901
(
2010
).
25.
A.
Béché
,
J. L.
Rouvière
,
J. P.
Barnes
, and
D.
Cooper
, “
Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography
,”
Ultramicroscopy
131
,
10
23
(
2013
).
26.
J. L.
Rouvière
,
A.
Mouti
, and
P.
Stadelmann
, “
Measuring strain on HR-STEM images: Application to threading dislocations in Al0.8In0.2N
,”
J. Phys.: Conf. Ser.
326
(
1
),
012022
(
2011
).
27.
L.
Jones
,
S.
Wenner
,
M.
Nord
,
P. H.
Ninive
,
O. M.
Løvvik
,
R.
Holmestad
, and
P. D.
Nellist
, “
Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping
,”
Ultramicroscopy
179
,
57
62
(
2017
).
28.
Q.
Li
,
T.
Miao
,
H.
Zhang
,
W.
Lin
,
W.
He
,
Y.
Zhong
,
L.
Xiang
,
L.
Deng
,
B.
Ye
,
Q.
Shi
,
Y.
Zhu
,
H.
Guo
,
W.
Wang
,
C.
Zheng
,
L.
Yin
,
X.
Zhou
,
H.
Xiang
, and
J.
Shen
, “
Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice
,”
Nat. Commun.
13
(
1
),
6593
(
2022
).
29.
M. J.
Hÿtch
, “
Geometric phase analysis of high resolution electron microscope images
,”
Scanning Microsc.
11
,
53
66
(
1997
).
30.
P. L.
Galindo
,
S.
Kret
,
A. M.
Sanchez
,
J.-Y.
Laval
,
A.
Yáñez
,
J.
Pizarro
,
E.
Guerrero
,
T.
Ben
, and
S. I.
Molina
, “
The Peak Pairs algorithm for strain mapping from HRTEM images
,”
Ultramicroscopy
107
(
12
),
1186
1193
(
2007
).
31.
V. B.
Ozdol
,
C.
Gammer
,
X. G.
Jin
,
P.
Ercius
,
C.
Ophus
,
J.
Ciston
, and
A. M.
Minor
, “
Strain mapping at nanometer resolution using advanced nano-beam electron diffraction
,”
Appl. Phys. Lett.
106
(
25
),
253107
(
2015
).
32.
G. W.
Paterson
,
R. W. H.
Webster
,
A.
Ross
,
K. A.
Paton
,
T. A.
Macgregor
,
D.
McGrouther
,
I.
MacLaren
, and
M.
Nord
, “
Fast pixelated detectors in scanning transmission electron microscopy. Part II: Post-acquisition data processing, visualization, and structural characterization
,”
Microsc. Microanal.
26
(
5
),
944
963
(
2020
).
33.
D.
Yoon
,
K.
Harikrishnan
,
Y.-T.
Shao
, and
D. A.
Muller
, “
High-speed, high-precision, and high-throughput strain mapping with cepstral transformed 4D-STEM Data
,”
Microsc. Microanal.
28
(
S1
),
796
798
(
2022
).
34.
M.
Hÿtch
,
F.
Houdellier
,
F.
Hüe
, and
E.
Snoeck
, “
Nanoscale holographic interferometry for strain measurements in electronic devices
,”
Nature
453
(
7198
),
1086
1089
(
2008
).
35.
D.
Cooper
,
J.-P.
Barnes
,
J.-M.
Hartmann
,
A.
Béché
, and
J.-L.
Rouviere
, “
Dark field electron holography for quantitative strain measurements with nanometer-scale spatial resolution
,”
Appl. Phys. Lett.
95
(
5
),
053501
(
2009
).
36.
A.
Béché
,
J. L.
Rouvière
,
J. P.
Barnes
, and
D.
Cooper
, “
Dark field electron holography for strain measurement
,”
Ultramicroscopy
111
(
3
),
227
238
(
2011
).
37.
C.
Gammer
,
C.
Ophus
,
T. C.
Pekin
,
J.
Eckert
, and
A. M.
Minor
, “
Local nanoscale strain mapping of a metallic glass during in situ testing
,”
Appl. Phys. Lett.
112
(
17
),
171905
(
2018
).
38.
S.
Kang
,
D.
Wang
,
A.
Caron
,
C.
Minnert
,
K.
Durst
,
C.
Kübel
, and
X.
Mu
, “
Direct observation of quadrupolar strain fields forming a shear band in metallic glasses
,”
Adv. Mater.
35
(
25
),
2212086
(
2023
).
39.
J.
Li
,
J.
Zhang
,
W.
Gao
,
G.
Huang
,
Z.
Di
,
R.
Liu
,
J.
Wang
, and
Y.
Mei
, “
Dry-released nanotubes and nanoengines by particle-assisted rolling
,”
Adv. Mater.
25
(
27
),
3715
3721
(
2013
).
40.
S.
Kang
,
D.
Wang
,
C.
Kübel
, and
X.
Mu
, “
Importance of TEM sample thickness for measuring strain fields
,”
Ultramicroscopy
255
,
113844
(
2024
).
41.
B.
Wu
,
Z.
Zhang
,
B.
Chen
,
Z.
Zheng
,
C.
You
,
C.
Liu
,
X.
Li
,
J.
Wang
,
Y.
Wang
,
E.
Song
,
J.
Cui
,
Z.
An
,
G.
Huang
, and
Y.
Mei
, “
One-step rolling fabrication of VO2 tubular bolometers with polarization-sensitive and omnidirectional detection
,”
Sci. Adv.
9
(
42
),
eadi7805
(
2023
).
42.
B.
Wu
,
Z.
Zhang
,
Z.
Zheng
,
T.
Cai
,
C.
You
,
C.
Liu
,
X.
Li
,
Y.
Wang
,
J.
Wang
,
H.
Li
,
E.
Song
,
J.
Cui
,
G.
Huang
, and
Y.
Mei
, “
Self-rolled-up ultrathin single-crystalline silicon nanomembranes for on-chip tubular polarization photodetectors
,”
Adv. Mater.
35
,
2306715
(
2023
).
43.
W.
Huang
,
X.
Yu
,
P.
Froeter
,
R.
Xu
,
P.
Ferreira
, and
X.
Li
, “
On-chip inductors with self-rolled-up SiNx nanomembrane tubes: A novel design platform for extreme miniaturization
,”
Nano Lett.
12
(
12
),
6283
6288
(
2012
).
44.
W.
Huang
,
J.
Zhou
,
P. J.
Froeter
,
K.
Walsh
,
S.
Liu
,
M. D.
Kraman
,
M.
Li
,
J. A.
Michaels
,
D. J.
Sievers
,
S.
Gong
, and
X.
Li
, “
Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform
,”
Nat. Electron.
1
(
5
),
305
313
(
2018
).
45.
W.
Huang
,
Z.
Yang
,
M. D.
Kraman
,
Q.
Wang
,
Z.
Ou
,
M. M.
Rojo
,
A. S.
Yalamarthy
,
V.
Chen
,
F.
Lian
,
J. H.
Ni
,
S.
Liu
,
H.
Yu
,
L.
Sang
,
J.
Michaels
,
D. J.
Sievers
,
J. G.
Eden
,
P. V.
Braun
,
Q.
Chen
,
S.
Gong
,
D. G.
Senesky
,
E.
Pop
, and
X.
Li
, “
Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology
,”
Sci. Adv.
6
(
3
),
eaay4508
(
2020
).
46.
C.
Ebner
,
R.
Sarkar
,
J.
Rajagopalan
, and
C.
Rentenberger
, “
Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction
,”
Ultramicroscopy
165
,
51
58
(
2016
).
47.
D.
Yu-Fu
,
Y.
Fei
,
Y.
Jian-Lin
, and
Z.
Wei
, “
The increasing of localized free volume in bulk metallic glass under uniaxial compression
,”
Chin. Phys.
16
(
7
),
2051
(
2007
).
48.
Y. H.
Li
,
W.
Zhang
,
C.
Dong
,
J. B.
Qiang
,
K.
Yubuta
,
A.
Makino
, and
A.
Inoue
, “
Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content
,”
J. Alloys Compd.
504
,
S2
S5
(
2010
).
49.
E.
Abe
, “
Atomic-scale characterization of nanostructured metallic materials by HAADF/Z-contrast STEM
,”
Mater. Trans.
44
(
10
),
2035
2041
(
2003
).
50.
X.
Mu
,
D.
Wang
,
T.
Feng
, and
C.
Kübel
, “
Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses
,”
Ultramicroscopy
168
,
1
6
(
2016
).
51.
G. P.
Nikishkov
, “
Curvature estimation for multilayer hinged structures with initial strains
,”
J. Appl. Phys.
94
(
8
),
5333
5336
(
2003
).
52.
L.
Wang
,
Z.
Tian
,
B.
Zhang
,
B.
Xu
,
T.
Wang
,
Y.
Wang
,
S.
Li
,
Z.
Di
, and
Y.
Mei
, “
On-chip rolling design for controllable strain engineering and enhanced photon–phonon interaction in graphene
,”
Small
15
(
23
),
1805477
(
2019
).
53.
A.
Fitzgibbon
,
M.
Pilu
, and
R. B.
Fisher
, “
Direct least square fitting of ellipses
,”
IEEE Trans. Pattern Anal. Mach. Intell.
21
(
5
),
476
480
(
1999
).

Supplementary Material

You do not currently have access to this content.