Mode selecting plays a vital role in the field of optoelectronics, such as optical communication, signal processing, on-chip light manipulation, mode conversion, and frequency synthesis. In this work, flexible selection and enhancement of the frequency modes in an unidirectional coupled Su–Schrieffer–Heeger (SSH) frequency lattice are obtained with Floquet exceptional points (EPs) and chiral Zener tunneling (ZT). The unidirectional coupled non-Hermitian SSH frequency lattices are synthesized by a double-ring system with complex dynamical modulations. Under an effective direct current (dc) force induced by the phase-mismatching of the modulations, the two Floquet bands of the non-Hermitian frequency lattices are degenerated and the Floquet EPs arise. Therefore, the unidirectional and irreversible frequency mode conversion takes place, which is the chiral ZT. Moreover, through perturbation analysis and numerical simulations, we prove that the frequency modes of the two-band system can be selected and enhanced by a multi-photon resonance dc force.

1.
L.-L.
Wan
and
X.-Y.
, “
Quantum-squeezing-induced point-gap topology and skin effect
,”
Phys. Rev. Lett.
130
,
203605
(
2023
).
2.
L.
Xiao
,
T.
Deng
,
K.
Wang
,
G.
Zhu
,
Z.
Wang
,
W.
Yi
, and
P.
Xue
, “
Non-Hermitian bulk–boundary correspondence in quantum dynamics
,”
Nat. Phys.
16
,
761
766
(
2020
).
3.
Y.
Sun
,
T.
Shi
,
Z.
Liu
,
Z.
Zhang
,
L.
Xiao
,
S.
Jia
, and
Y.
Hu
, “
Fractional quantum Zeno effect emerging from non-Hermitian physics
,”
Phys. Rev. X
13
,
031009
(
2023
).
4.
S.
Baek
,
S. H.
Park
,
D.
Oh
,
K.
Lee
,
S.
Lee
,
H.
Lim
,
T.
Ha
,
H. S.
Park
,
S.
Zhang
,
L.
Yang
,
B.
Min
, and
T. T.
Kim
, “
Non-Hermitian chiral degeneracy of gated graphene metasurfaces
,”
Light
12
,
87
(
2023
).
5.
S.
Longhi
, “
Phase transitions and bunching of correlated particles in a non-Hermitian quasicrystal
,”
Phys. Rev. B
108
,
075121
(
2023
).
6.
D.
Ma
,
A.
Arora
,
G.
Vignale
, and
J. C. W.
Song
, “
Anomalous skew-scattering nonlinear Hall effect and chiral photocurrents in PT-symmetric antiferromagnets
,”
Phys. Rev. Lett.
131
,
076601
(
2023
).
7.
M.
Yoshida
,
S.
Katsuno
,
T.
Inoue
,
J.
Gelleta
,
K.
Izumi
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
High-brightness scalable continuous-wave single-mode photonic-crystal laser
,”
Nature
618
,
727
732
(
2023
).
8.
W.
Wang
,
X.
Wang
, and
G.
Ma
, “
Non-Hermitian morphing of topological modes
,”
Nature
608
,
50
55
(
2022
).
9.
K.
Wang
,
A.
Dutt
,
C. C.
Wojcik
, and
S.
Fan
, “
Topological complex-energy braiding of non-Hermitian bands
,”
Nature
598
,
59
64
(
2021
).
10.
K.
Wang
,
A.
Dutt
,
K. Y.
Yang
,
C. C.
Wojcik
,
J.
Vučković
, and
S.
Fan
, “
Generating arbitrary topological windings of a non-Hermitian band
,”
Science
371
,
1240
1245
(
2021
).
11.
Z.
Li
,
X.-W.
Luo
,
D.
Lin
,
A.
Gharajeh
,
J.
Moon
,
J.
Hou
,
C.
Zhang
, and
Q.
Gu
, “
Topological microlaser with a non-Hermitian topological bulk
,”
Phys. Rev. Lett.
131
,
023202
(
2023
).
12.
Q.
Zhang
,
Y.
Li
,
H.
Sun
,
X.
Liu
,
L.
Zhao
,
X.
Feng
,
X.
Fan
, and
C.
Qiu
, “
Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions
,”
Phys. Rev. Lett.
130
,
017201
(
2023
).
13.
P.
Zhu
,
X. Q.
Sun
,
T. L.
Hughes
, and
G.
Bahl
, “
Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit
,”
Nat. Commun.
14
,
720
(
2023
).
14.
S.
Yao
,
F.
Song
, and
Z.
Wang
, “
Non-Hermitian Chern bands
,”
Phys. Rev. Lett.
121
,
136802
(
2018
).
15.
N.
Okuma
,
K.
Kawabata
,
K.
Shiozaki
, and
M.
Sato
, “
Topological origin of non-Hermitian skin effects
,”
Phys. Rev. Lett.
124
,
086801
(
2020
).
16.
C.
Jiang
,
Y.
Liu
,
X.
Li
,
Y.
Song
, and
S.
Ke
, “
Twist-induced non-Hermitian skin effect in optical waveguide arrays
,”
Appl. Phys. Lett.
123
,
151101
(
2023
).
17.
Y.
Liu
,
C.
Jiang
,
W.
Wen
,
Y.
Song
,
X.
Li
,
P.
Lu
, and
S.
Ke
, “
Topological phases in photonic microring lattices with projective symmetry
,”
Phys. Rev. A
109
,
013516
(
2024
).
18.
S.
Yao
and
Z.
Wang
, “
Edge states and topological invariants of non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
086803
(
2018
).
19.
K.
Zhang
,
Z.
Yang
, and
C.
Fang
, “
Universal non-Hermitian skin effect in two and higher dimensions
,”
Nat. Commun.
13
,
2496
(
2022
).
20.
B.
Zhu
,
Q.
Wang
,
D.
Leykam
,
H.
Xue
,
Q. J.
Wang
, and
Y. D.
Chong
, “
Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect
,”
Phys. Rev. Lett.
129
,
013903
(
2022
).
21.
C.
Hou
,
L.
Li
,
G.
Wu
,
Y.
Ruan
,
S.
Chen
, and
F.
Baronio
, “
Topological edge states in one-dimensional non-Hermitian Su-Schrieffer-Heeger systems of finite lattice size: Analytical solutions and exceptional points
,”
Phys. Rev. B
108
,
08542
(
2023
).
22.
C.-X.
Guo
,
C.-H.
Liu
,
X.-M.
Zhao
,
Y.
Liu
, and
S.
Chen
, “
Exact solution of non-Hermitian systems with generalized boundary conditions: Size-dependent boundary effect and fragility of the skin effect
,”
Phys. Rev. Lett.
127
,
116801
(
2021
).
23.
Q.
Zhou
,
J.
Wu
,
Z.
Pu
,
J.
Lu
,
X.
Huang
,
W.
Deng
,
M.
Ke
, and
Z.
Liu
, “
Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points
,”
Nat. Commun.
14
,
4569
(
2023
).
24.
Z.
Gao
,
X.
Qiao
,
M.
Pan
,
S.
Wu
,
J.
Yim
,
K.
Chen
,
B.
Midya
,
L.
Ge
, and
L.
Feng
, “
Two-dimensional reconfigurable non-Hermitian gauged laser array
,”
Phys. Rev. Lett.
130
,
263801
(
2023
).
25.
S.
Longhi
, “
Self-healing of non-Hermitian topological skin modes
,”
Phys. Rev. Lett.
128
,
157601
(
2022
).
26.
S.
Longhi
, “
Non-Bloch-band collapse and chiral Zener tunneling
,”
Phys. Rev. Lett.
124
,
066602
(
2020
).
27.
S.
Longhi
, “
Floquet exceptional points and chirality in non-Hermitian Hamiltonians
,”
J. Phys. A
50
,
505201
(
2017
).
28.
Y.
Song
,
Y.
Chen
,
W.
Xiong
, and
M.
Wang
, “
Flexible light manipulation in non-Hermitian frequency Su–Schrieffer–Heeger lattice
,”
Opt. Lett.
47
,
1646
(
2022
).
29.
J.
Hu
,
R.-Y.
Zhang
,
Y.
Wang
,
X.
Ouyang
,
Y.
Zhu
,
H.
Jia
, and
C. T.
Chan
, “
Non-Hermitian swallowtail catastrophe revealing transitions among diverse topological singularities
,”
Nat. Phys.
19
,
1098
1103
(
2023
).
30.
A.
Schumer
,
Y. G. N.
Liu
,
J.
Leshin
,
L.
Ding
,
Y.
Alahmadi
,
A. U.
Hassan
,
H.
Nasari
,
S.
Rotter
,
D. N.
Christodoulides
,
P.
LiKamWa
, and
M.
Khajavikhan
, “
Topological modes in a laser cavity through exceptional state transfer
,”
Science
375
,
884
888
(
2022
).
31.
Y.
Tang
,
C.
Liang
,
X.
Wen
,
W.
Li
,
A.-N.
Xu
, and
Y.-C.
Liu
, “
PT-symmetric feedback induced linewidth narrowing
,”
Phys. Rev. Lett.
130
,
193602
(
2023
).
32.
Y.
Meng
,
S.
Lin
,
B. J.
Shi
,
B.
Wei
,
L.
Yang
,
B.
Yan
,
Z.
Zhu
,
X.
Xi
,
Y.
Wang
,
Y.
Ge
,
S. Q.
Yuan
,
J.
Chen
,
G. G.
Liu
,
H. X.
Sun
,
H.
Chen
,
Y.
Yang
, and
Z.
Gao
, “
Spinful topological phases in acoustic crystals with projective PT symmetry
,”
Phys. Rev. Lett.
130
,
026101
(
2023
).
33.
E.
Seker
,
B.
Olyaeefar
,
K.
Dadashi
,
S.
Sengul
,
M. H.
Teimourpour
,
R.
El-Ganainy
, and
A.
Demir
, “
Single-mode quasi PT-symmetric laser with high power emission
,”
Light
12
,
149
(
2023
).
34.
M. N.
Akhter
,
S. B.
Ivars
,
M.
Botey
,
R.
Herrero
, and
K.
Staliunas
, “
Non-Hermitian mode cleaning in periodically modulated multimode fibers
,”
Phys. Rev. Lett.
131
,
043604
(
2023
).
35.
A.
Dutt
,
M.
Minkov
,
Q.
Lin
,
L.
Yuan
,
D. A. B.
Miller
, and
S.
Fan
, “
Experimental band structure spectroscopy along a synthetic dimension
,”
Nat. Commun.
10
,
3122
(
2019
).
36.
G.
Li
,
L.
Wang
,
R.
Ye
,
Y.
Zheng
,
D. W.
Wang
,
X. J.
Liu
,
A.
Dutt
,
L.
Yuan
, and
X.
Chen
, “
Direct extraction of topological Zak phase with the synthetic dimension
,”
Light
12
,
81
(
2023
).
37.
X.-W.
Luo
,
X.
Zhou
,
C.-F.
Li
,
J.-S.
Xu
,
G.-C.
Guo
, and
Z.-W.
Zhou
, “
Quantum simulation of 2D topological physics in a 1D array of optical cavities
,”
Nat. Commun.
6
,
7704
(
2015
).
38.
X.
Qiu
,
H.
Guo
,
Y.
Ren
, and
L.
Chen
, “
High-dimensional photonic orbital-angular-momentum frequency interface
,”
Phys. Rev. Appl.
19
,
044072
(
2023
).
39.
L.
Yuan
,
Q.
Lin
,
A.
Zhang
,
M.
Xiao
,
X.
Chen
, and
S.
Fan
, “
Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions
,”
Phys. Rev. Lett.
122
,
083903
(
2019
).
40.
Y.
Song
,
S.
Ke
,
Y.
Chen
, and
M.
Wang
, “
Mode-locking in anti-PT symmetric frequency lattices
,”
Appl. Phys. Lett.
122
,
151106
(
2023
).
41.
L.
Yuan
,
Q.
Lin
,
M.
Xiao
,
A.
Dutt
, and
S.
Fan
, “
Pulse shortening in an actively mode-locked laser with parity-time symmetry
,”
APL Photonics
3
,
086103
(
2018
).
42.
D.
Cheng
,
K.
Wang
, and
S.
Fan
, “
Artificial non-Abelian lattice gauge fields for photons in the synthetic frequency dimension
,”
Phys. Rev. Lett.
130
,
083601
(
2023
).
43.
A.
Senanian
,
L. G.
Wright
,
P. F.
Wade
,
H. K.
Doyle
, and
P. L.
McMahon
, “
Programmable large-scale simulation of bosonic transport in optical synthetic frequency lattices
,”
Nat. Phys.
19
,
1333
1339
(
2023
).
44.
A.
Dutt
,
M.
Minkov
,
I. A. D.
Williamson
, and
S.
Fan
, “
Higher-order topological insulators in synthetic dimensions
,”
Light
9
,
131
(
2020
).
45.
C.
Leefmans
,
A.
Dutt
,
J.
Williams
,
L.
Yuan
,
M.
Parto
,
F.
Nori
,
S.
Fan
, and
A.
Marandi
, “
Topological dissipation in a time-multiplexed photonic resonator network
,”
Nat. Phys.
18
,
442
449
(
2022
).
46.
L.
Fan
,
Z.
Zhao
,
K.
Wang
,
A.
Dutt
,
J.
Wang
,
S.
Buddhiraju
,
C. C.
Wojcik
, and
S.
Fan
, “
Multidimensional convolution operation with synthetic frequency dimensions in photonics
,”
Phys. Rev. Appl.
18
,
034088
(
2022
).
47.
D.
Yu
,
G.
Li
,
L.
Wang
,
D.
Leykam
,
L.
Yuan
, and
X.
Chen
, “
Moiré lattice in one-dimensional synthetic frequency dimension
,”
Phys. Rev. Lett.
130
,
143801
(
2023
).
48.
E. D.
Caldwell
,
L. C.
Sinclair
,
N. R.
Newbury
, and
J. D.
Deschenes
, “
The time-programmable frequency comb and its use in quantum-limited ranging
,”
Nature
610
,
667
673
(
2022
).
49.
V.
Snigirev
,
A.
Riedhauser
,
G.
Lihachev
,
M.
Churaev
,
J.
Riemensberger
,
R. N.
Wang
,
A.
Siddharth
,
G.
Huang
,
C.
Mohl
,
Y.
Popoff
,
U.
Drechsler
,
D.
Caimi
,
S.
Honl
,
J.
Liu
,
P.
Seidler
, and
T. J.
Kippenberg
, “
Ultrafast tunable lasers using lithium niobate integrated photonics
,”
Nature
615
,
411
417
(
2023
).

Supplementary Material

You do not currently have access to this content.