In this work, a study comprising the electrical characterization and analysis of the electrical response of metal–insulator–semiconductor Al/Al2O3/Si capacitors in a temperature range from ambient temperature down to 3.6 K is presented. An ultra-thin 6 nm Al2O3 film, deposited by atomic layer deposition, was used as an insulating layer. Current–voltage and electrical stress measurements were performed on the capacitors in the specified temperature range, and the experimental data obtained were analyzed using current transport equations to model the conduction mechanisms that allow charge transport through the Al2O3. Energetic parameters associated with trap levels within the Al2O3 bandgap corresponding to the Poole–Frenkel emission and trap-assisted tunneling mechanisms were obtained, and their temperature dependances were studied and associated with the presence of physical material defects. The analysis of the modeling results points to trap-assisted tunneling as the dominant mechanism at low temperatures for intermediate electric field values. Additional phenomena that limit charge transport were also observed, such as charge trapping in the bulk of the Al2O3 upon the application of electrical stress at ambient temperature and silicon freeze out at cryogenic temperatures. Our findings constitute an effort at understanding the physical phenomena that govern the electrical behavior of thin-film Al2O3-based capacitors, especially at cryogenic temperatures, given that these materials and devices are of considerable importance for applications in CMOS-based cryoelectronics and quantum technologies, among others.

1.
W. S.
Yang
,
Y. K.
Kim
,
S. Y.
Yang
,
J. H.
Choi
,
H. S.
Park
,
S. I.
Lee
, and
J. B.
Yoo
,
Surf. Coat. Technol.
131
(
1–3
),
79
83
(
2000
).
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
(
10
),
5243
5275
(
2001
).
3.
K.
Oishi
,
D.
Akai
, and
M.
Ishida
,
Solid-State Electron.
103
,
110
114
(
2015
).
4.
J.
Zhang
,
X.
Chen
,
L.
Wang
,
Z. S.
Zheng
,
H. P.
Zhu
,
J. T.
Gao
,
D. L.
Li
,
J. J.
Luo
,
Z. S.
Han
, and
C.
Song
,
J. Appl. Phys.
125
(
11
),
115701
(
2019
).
5.
P.
Ma
,
L.
Du
,
Y.
Wang
,
R.
Jiang
,
Q.
Xin
,
Y.
Li
, and
A.
Song
,
Appl. Phys. Lett.
112
(
2
),
023501
(
2018
).
6.
J.
Urresti
,
F.
Arith
,
S.
Olsen
,
N.
Wright
, and
A.
O'Neill
,
IEEE Trans. Electron Devices
66
(
4
),
1710
1716
(
2019
).
7.
J. S.
Bi
,
Y. N.
Xu
,
G. B.
Xu
,
H. B.
Wang
,
L.
Chen
, and
M.
Liu
,
IEEE Trans. Nucl. Sci.
65
(
1
),
200
205
(
2018
).
8.
J. A.
Van Delft
,
D.
Garcia-Alonso
, and
W. M. M.
Kessels
,
Semicond. Sci. Technol.
27
(
7
),
074002
(
2012
).
9.
M. B.
Zahid
,
D. R.
Aguado
,
R.
Degraeve
,
W. C.
Wang
,
B.
Govoreanu
,
M.
Toledano-Luque
,
V. V.
Afanas'Ev
, and
J.
Van Houdt
,
IEEE Trans. Electron Devices
57
(
11
),
2907
2916
(
2010
).
10.
A. R.
Meyer
,
R. P.
Chaukulkar
,
N.
Leick
,
W.
Nemeth
,
D. L.
Young
,
P.
Stradins
, and
S.
Agarwal
,
ACS Appl. Nano Mater.
4
(
7
),
6629
6636
(
2021
).
11.
M.
Gurvitch
,
M. A.
Washington
, and
H. A.
Huggins
,
Appl. Phys. Lett.
42
(
5
),
472
474
(
1983
).
12.
J.
Wilt
,
Y.
Gong
,
M.
Gong
,
F.
Su
,
H.
Xu
,
R.
Sakidja
,
A.
Elliot
,
R.
Lu
,
S.
Zhao
,
S.
Han
, and
J. Z.
Wu
,
Phys. Rev. Appl.
7
(
6
),
064022
(
2017
).
13.
S.
Fritz
,
L.
Radtke
,
R.
Schneider
,
M.
Weides
, and
D.
Gerthsen
,
J. Appl. Phys.
125
(
16
),
165301
(
2019
).
14.
J. S.
Kline
,
H.
Wang
,
S.
Oh
,
J. M.
Martinis
, and
D. P.
Pappas
,
Supercond. Sci. Technol.
22
(
1
),
015004
(
2008
).
15.
J. M.
Kreikebaum
,
K. P.
O'Brien
,
A.
Morvan
, and
I.
Siddiqi
,
Supercond. Sci. Technol.
33
(
6
),
06LT02
(
2020
).
16.
A.
Bilmes
,
A. K.
Händel
,
S.
Volosheniuk
,
A. V.
Ustinov
, and
J.
Lisenfeld
,
Supercond. Sci. Technol.
34
(
12
),
125011
(
2021
).
17.
C. A.
Jhabvala
,
P. C.
Nagler
, and
T. R.
Stevenson
,
J. Low Temp. Phys.
200
,
331
335
(
2020
).
18.
M. D.
Groner
,
J. W.
Elam
,
F. H.
Fabreguette
, and
S. M.
George
,
Thin Solid Films
413
(
1–2
),
186
197
(
2002
).
19.
P.
Ma
,
W.
Guo
,
J.
Sun
,
J.
Gao
,
G.
Zhang
,
Q.
Xin
,
Y.
Li
, and
A.
Song
,
Semicond. Sci. Technol.
34
(
10
),
105004
(
2019
).
20.
V. V.
Afanas'Ev
,
M.
Houssa
,
A.
Stesmans
,
C.
Merckling
,
T.
Schram
, and
J. A.
Kittl
,
Appl. Phys. Lett.
99
(
7
),
072103
(
2011
).
21.
J.
Molina-Reyes
,
H.
Uribe-Vargas
,
R.
Torres-Torres
,
P. G.
Mani-Gonzalez
, and
A.
Herrera-Gomez
,
Thin Solid Films
638
,
48
56
(
2017
).
22.
H.
Uribe-Vargas
and
J.
Molina-Reyes
,
J. Mater. Sci.
29
,
15496
15501
(
2018
).
23.
S.
Salas-Rodríguez
,
J.
Molina-Reyes
,
J.
Martínez-Castillo
,
R. M.
Woo-Garcia
,
A. L.
Herrera-May
, and
F.
López-Huerta
,
Electronics
12
(
4
),
903
(
2023
).
24.
F.
Talbi
,
F.
Lalam
, and
D.
Malec
,
J. Phys. D
40
(
12
),
3803
(
2007
).
25.
R. A.
Smith
,
Semiconductors
(
Cambridge University Press
,
1979
).
26.
M.
Grundmann
,
The Physics of Semiconductors
(
Springer
,
2010
).
27.
D.
Liu
,
Y.
Guo
,
L.
Lin
, and
J.
Robertson
,
J. Appl. Phys.
114
(
8
),
083704
(
2013
).
28.
Z.
Guo
,
F.
Ambrosio
, and
A.
Pasquarello
,
Appl. Phys. Lett.
109
(
6
),
062903
(
2016
).
29.
O. A.
Dicks
,
J.
Cottom
,
A. L.
Shluger
, and
V. V.
Afanas'Ev
,
Nanotechnology
30
(
20
),
205201
(
2019
).
30.
N. F.
Mott
and
E. A.
Davis
,
Electronic Processes in Non-Crystalline Materials
(
Oxford University Press
,
2012
).
31.
R. H.
French
,
J. Am. Ceram. Soc.
73
(
3
),
477
489
(
1990
).
You do not currently have access to this content.