Thermal considerations affect the performance of most microsystems. Although surface techniques can give information on the thermal properties within the material or about buried heat sources and defects, mapping temperature and thermal properties in three dimension (3D) is critical and has not been addressed yet. Infrared thermography, commonly used for opaque materials, is not adapted to semi-transparent samples such as microfluidic chips or semiconductor materials in the infrared range. This work aims at answering these needs by using the variations of transmittance with temperature to obtain information on the temperature within the thickness of the sample. We use a tunable mid-infrared light source combined with an infrared camera to measure these variations of transmittance in a glass wafer. We couple this technique with a thermal model to extract the thermotransmittance coefficient—the coefficient of temperature variation of the transmittance. We then introduce a semiempirical model based on Lorentz oscillators to estimate the temperature-dependent optical properties of our sample in the mid-IR spectral range. Combined with the measurement, this paper reports the spectroscopic behavior of the thermotransmittance coefficient in the mid-IR range and a way to predict it.

1.
P. M.
Norris
,
A. P.
Caffrey
,
R. J.
Stevens
,
J. M.
Klopf
,
J. T.
McLeskey
, and
A. N.
Smith
, “
Femtosecond pump-probe nondestructive examination of materials (invited)
,”
Rev. Sci. Instrum.
74
,
400
406
(
2003
).
2.
R.
Anufriev
,
S.
Gluchko
,
S.
Volz
, and
M.
Nomura
, “
Quasi-ballistic heat conduction due to Lévy phonon flights in silicon nanowires
,”
ACS Nano
12
,
11928
11935
(
2018
).
3.
K.
Yazawa
,
D.
Kendig
,
J.
Christofferson
,
A.
Marconnet
, and
A.
Shakouri
, “
Fast transient and steady state thermal imaging of CMOS integrated circuit chips considering package thermal boundaries
,” in
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA
(IEEE,
2012
), pp.
1405
1411
.
4.
D. G.
Cahill
,
K.
Goodson
, and
A.
Majumdar
, “
Thermometry and thermal transport in micro/nanoscale solid-state devices and structures
,”
J. Heat Transfer
124
,
223
(
2002
).
5.
F.
Cernuschi
,
A.
Russo
,
L.
Lorenzoni
, and
A.
Figari
, “
In-plane thermal diffusivity evaluation by infrared thermography
,”
Rev. Sci. Instrum.
72
,
3988
3995
(
2001
).
6.
M. M.
Groz
,
A.
Sommier
,
E.
Abisset
,
S.
Chevalier
,
J. L.
Battaglia
,
J. C.
Batsale
, and
C.
Pradere
, “
Thermal resistance field estimations from IR thermography using multiscale Bayesian inference
,”
Quant. Infrared Thermogr. J.
18
,
332
343
(
2021
).
7.
O.
Breitenstein
,
M.
Langenkamp
,
F.
Altmann
,
D.
Katzer
,
A.
Lindner
, and
H.
Eggers
, “
Microscopic lock-in thermography investigation of leakage sites in integrated circuits
,”
Rev. Sci. Instrum.
71
,
4155
4160
(
2000
).
8.
A.
Bedoya
,
J.
González
,
J.
Rodríguez-Aseguinolaza
,
A.
Mendioroz
,
A.
Sommier
,
J. C.
Batsale
,
C.
Pradere
, and
A.
Salazar
, “
Measurement of in-plane thermal diffusivity of solids moving at constant velocity using laser spot infrared thermography
,”
Measurement
134
,
519
526
(
2019
).
9.
C.
Chassain
,
A.
Kusiak
,
K.
Krause
,
M.
Garcia
, and
J.-L.
Battaglia
, “
Bayesian estimation of thermal properties using periodically pulsed photothermal radiometry: A focus on interfacial thermal resistances between layers
,”
Phys. Status Solidi RRL
17
(
2
),
2200328
(
2023
).
10.
J.
Gieseler
,
A.
Adibekyan
,
C.
Monte
, and
J.
Hollandt
, “
Apparent emissivity measurement of semi-transparent materials part 2: Theoretical concept
,”
J. Quant. Spectrosc. Radiat. Transfer
258
,
107317
(
2021
).
11.
S.
Jeon
,
S.-N.
Park
,
Y. S.
Yoo
,
J.
Hwang
,
C.-W.
Park
, and
G. W.
Lee
, “
Simultaneous measurement of emittance, transmittance, and reflectance of semitransparent materials at elevated temperature
,”
Opt. Lett.
35
,
4015
(
2010
).
12.
J.
Gieseler
,
A.
Adibekyan
,
C.
Monte
, and
J.
Hollandt
, “
Apparent emissivity measurement of semi-transparent materials part 1: Experimental realization
,”
J. Quant. Spectrosc. Radiat. Transfer
257
,
107316
(
2020
).
13.
O.
Rozenbaum
,
D. D. S.
Meneses
,
Y.
Auger
,
S.
Chermanne
, and
P.
Echegut
, “
A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature
,”
Rev. Sci. Instrum.
70
,
4020
4025
(
1999
).
14.
A.
Adibekyan
,
E.
Kononogova
,
C.
Monte
, and
J.
Hollandt
, “
Review of PTB measurements on emissivity, reflectivity and transmissivity of semitransparent fiber-reinforced plastic composites
,”
Int. J. Thermophys.
40
,
36
(
2019
).
15.
C.
Bourgès
,
S.
Chevalier
,
J.
Maire
,
A.
Sommier
,
C.
Pradère
, and
S.
Dilhaire
, “
Infrared thermotransmittance-based temperature field measurements in semitransparent media
,”
Rev. Sci. Instrum.
94
,
034905
(
2023
).
16.
E. A. A.
Pogna
,
X.
Jia
,
A.
Principi
,
A.
Block
,
L.
Banszerus
,
J.
Zhang
et al, “
Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons
,”
ACS Nano
15
,
11285
11295
(
2021
).
17.
M.
Farzaneh
,
K.
Maize
,
D.
Lüerßen
,
J. A.
Summers
,
P. M.
Mayer
,
P. E.
Raad
,
K. P.
Pipe
,
A.
Shakouri
,
R. J.
Ram
, and
J. A.
Hudgings
, “
CCD-based thermoreflectance microscopy: Principles and applications
,”
J. Phys. D: Appl. Phys
42
(14),
143001
(
2009
).
18.
C.
Pradere
,
M.
Ryu
,
A.
Sommier
,
M.
Romano
,
A.
Kusiak
,
J. L.
Battaglia
,
J. C.
Batsale
, and
J.
Morikawa
, “
Non-contact temperature field measurement of solids by infrared multispectral thermotransmittance
,”
J. Appl. Phys.
121
,
085102
(
2017
).
19.
M.
Bensalem
,
A.
Sommier
,
J. C.
Mindeguia
,
J. C.
Batsale
,
L.-D.
Patino-Lope
, and
C.
Pradere
, “
Contactless transient THz temperature imaging by thermo-transmittance technique on semi-transparent materials
,”
J. Infrared, Millimeter, Terahertz Waves
39
,
1112
1126
(
2018
).
20.
N.
Kakuta
,
Y.
Fukuhara
,
K.
Kondo
,
H.
Arimoto
, and
Y.
Yamada
, “
Temperature imaging of water in a microchannel using thermal sensitivity of near-infrared absorption
,”
Lab Chip
11
,
3479
(
2011
).
21.
N.
Kakuta
,
H.
Yamashita
,
D.
Kawashima
,
K.
Kondo
,
H.
Arimoto
, and
Y.
Yamada
, “
Simultaneous imaging of temperature and concentration of ethanol–water mixtures in microchannel using near-infrared dual-wavelength absorption technique
,”
Meas. Sci. Technol.
27
,
115401
(
2016
).
22.
N.
Kakuta
,
Y.
Arakawa
,
M.
Kyoda
,
T.
Miyake
,
K.
Mishiba
, and
K.
Kondo
, “
Near-infrared measurement of axisymmetric temperature field formed by free convection from a 1-mm-diameter heating sphere in water
,”
Int. J. Heat Mass Transfer
137
,
847
856
(
2019
).
23.
T.-A.
Nguyen
,
K.
Kondo
, and
N.
Kakuta
, “
Near-infrared measurement of temperature fields formed by mixed convection from a small heating sphere in water
,”
Int. J. Therm. Sci.
176
,
107498
(
2022
).
24.
V.-C.
Han
and
N.
Kakuta
, “
Near-infrared measurement of water temperature near micro-magnetic particle layer in a fluidic channel under induction heating
,”
Exp. Therm. Fluid Sci.
115
,
110087
(
2020
).
25.
L.
Yu
,
E.
Bonnell
,
D.
Homa
,
G.
Pickrell
,
A.
Wang
,
P. R.
Ohodnicki
,
S.
Woodruff
,
B.
Chorpening
, and
M.
Buric
, “
Observation of temperature dependence of the IR hydroxyl absorption bands in silica optical fiber
,”
Opt. Fiber Technol.
30
,
1
7
(
2016
).
26.
L.
Yu
,
D.
Homa
,
P.
Ohodnicki
,
M.
Buric
,
B.
Chorpening
,
G.
Pickrell
, and
A.
Wang
, “
Thermally induced emission from hydroxyl groups in fused silica optical fibers
,”
Opt. Fiber Technol.
52
,
101951
(
2019
).
27.
A. L.
Edwards
, “
Compilation of thermal property data for computer heat-conduction calculations
,” Lawrence Radiation Laboratory Report No. UCRL-50589 (1969), see https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/UCRL50589.xhtml.
28.
S. W.
Churchill
and
H. H. S.
Chu
, “
Correlating equations for laminar and turbulent free convection from a vertical plate
,”
Int. J. Heat Mass Transfer
18
,
1323
1329
(
1975
).
29.
E.
Hecht
,
Optics: International Edition
(
Pearson
,
2003
).
30.
K. M.
Davis
,
A.
Agarwal
,
M.
Tomozawa
, and
K.
Hirao
, “
Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass
,”
J. Non. Cryst. Solids
203
,
27
36
(
1996
).
31.
C. Z.
Tan
, “
Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy
,”
J. Non. Cryst. Solids
223
,
158
163
(
1998
).
32.
G.
Navarra
,
I.
Iliopoulos
,
V.
Militello
,
S. G.
Rotolo
, and
M.
Leone
, “
OH-related infrared absorption bands in oxide glasses
,”
J. Non. Cryst. Solids
351
,
1796
1800
(
2005
).
33.
T.
Izawa
,
N.
Shibata
, and
A.
Takeda
, “
Optical attenuation in pure and doped fused silica in the ir wavelength region
,”
Appl. Phys. Lett.
31
,
33
35
(
1977
).
34.
Handbook of Ellipsometry, edited by
H. G.
Tompkins
and
E. A.
Irene
(
William Andrew
,
2005
), ISBN: 9780815517474.
35.
D.
De Sousa Meneses
,
J.-F.
Brun
,
P.
Echegut
, and
P.
Simon
, “
Contribution of semi-quantum dielectric function models to the analysis of infrared spectra
,”
Appl. Spectrosc.
58
,
969
974
(
2004
).
36.
R.
Kitamura
,
L.
Pilon
, and
M.
Jonasz
, “
Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
,”
Appl. Opt.
46
,
8118
(
2007
).
37.
A. M.
Efimov
and
V. G.
Pogareva
, “
IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm−1 region
,”
Chem. Geol
229
,
198
217
(
2006
).
38.
D.
De Sousa Meneses
,
G.
Gruener
,
M.
Malki
, and
P.
Echegut
, “
Causal Voigt profile for modeling reflectivity spectra of glasses
,”
J. Non. Cryst. Solids
351
,
124
129
(
2005
).
39.
D.
De Sousa Meneses
,
M.
Malki
, and
P.
Echegut
, “
Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy
,”
J. Non. Cryst. Solids
352
,
769
776
(
2006
).
40.
A.
Block
,
M.
Liebel
,
R.
Yu
,
M.
Spector
,
Y.
Sivan
,
F. J.
García de Abajo
, and
N. F.
van Hulst
, “
Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy
,”
Sci. Adv.
5
(5),
eaav8965
(
2019
).
41.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).

Supplementary Material

You do not currently have access to this content.