Lithium metavanadate (LiVO3) is a typical ionic conductor with a monoclinic pyroxene-type structure at ambient conditions. Here, we investigated the structural and electrical transport properties of LiVO3 under high pressures by combining in situ Raman scattering, x-ray diffraction, impedance spectroscopy measurements, and first-principles calculations. All experimental and theoretical results demonstrated that LiVO3 undergoes a structural transition from monoclinic to triclinic phase at around 5 GPa, during which partial VO4 tetrahedrons are transformed into a VO6 octahedron. The ion migration of LiVO3 was significantly suppressed above 5 GPa and an ionic–electronic transition was discovered at 10.7 GPa. The structural evolution involving coordination environment change results in an electron density rearrangement around Li and O atoms, which are responsible for the transformation of electrical transport mechanism in LiVO3 under high pressures. These results expand our understanding of the electrical and structural properties of LiVO3 under high pressures and provide insights into the pressure effects on ion migration in solid electrolytes.

1.
M. R.
Ahmed
and
G. A.
Gehring
, “
Potts model for the distortion transition in LaMnO3
,”
Phys. Rev. B
74
,
014420
(
2006
).
2.
S.
Shao
,
B.
Liu
,
M.
Zhang
,
J.
Yin
,
Y.
Gao
,
K.
Ye
,
J.
Yan
,
G.
Wang
,
K.
Zhu
, and
D.
Cao
, “
Synthesis and electrochemical performance of LiVO3 anode materials for full vanadium-based lithium-ion batteries
,”
J. Energy Storage
35
,
102254
(
2021
).
3.
Y.
Qu
,
W.
Tang
,
H.
Liu
,
C.
Li
,
L.
Zou
,
Z.
Chen
,
Z.
Yang
,
J.
Su
, and
W.
Zhang
, “
Threefold modification with dual-cation doping and LiVO3 coating boosts long-term cyclability and rate capability of Li-rich cathode materials for lithium-ion batteries
,”
Ind. Eng. Chem. Res.
62
,
10467
(
2023
).
4.
M.
Khedidji
, “
First-principles study of pyroxene structure LiVO3
,”
J. Solid State Chem.
312
,
123177
(
2022
).
5.
C.
Liao
,
C.
Yu
,
X.
Miao
,
S.
Chen
,
L.
Peng
,
C.
Wei
,
Z.
Wu
,
S.
Cheng
, and
J.
Xie
, “
Synthesis of Br-rich argyrodite electrolytes enables all-solid-state batteries with superior battery performances at different operating temperatures
,”
Materialia
26
,
101603
(
2022
).
6.
D.
Zhao
,
C.
Dong
,
X.
Pu
,
H.
Huang
,
X.
Fu
, and
Z.
Chen
, “
Facile synthesis of porous coralline LiVO3 as high-performance Li-ion battery cathodes
,”
ChemistrySelect
3
,
592
(
2018
).
7.
T.
Onodera
,
J.
Kawaji
,
A.
Sato
, and
T.
Okumura
, “
Electrochemical performance of an all-solid-state lithium ion battery with a binder-free lamellar LiVO3 active material layer prepared by liquefaction approach
,”
Solid State Ionics
295
,
41
(
2016
).
8.
D.
Yang
,
D.
Zhang
,
H.
Wu
,
T.
Xiao
, and
S.
Ni
, “
A novel approach to LiVO3 synthesis enables its outstanding lithium storage performance
,”
Ionics
28
,
3671
(
2022
).
9.
B.
Su
,
S.
Wu
,
H.
Liang
,
Q.
Gu
,
H.
Wang
,
W.
Zhou
,
X.
Zhao
,
T.
Zhang
,
P. H. L.
Sit
,
W.
Zhang
, and
D. Y. W.
Yu
, “
Boosting capacity and operating voltage of LiVO3 as cathode for lithium-ion batteries by activating oxygen reaction in the lattice
,”
J. Power Sources
517
,
230728
(
2022
).
10.
X.
Fu
,
X.
Pu
,
H.
Wang
,
D.
Zhao
,
G.
Liu
, and
Z.
Chen
, “
Understanding capacity fading of the LiVO3 cathode material by limiting the cutoff voltage
,”
Phys. Chem. Chem. Phys.
21
,
7009
(
2019
).
11.
S.
Li
,
Y.
Zhang
,
Y.
Tang
,
X.
Tan
,
S.
Liang
, and
J.
Zhou
, “
Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries
,”
J. Electroanal. Chem.
853
,
113505
(
2019
).
12.
N. V.
Kosova
,
D. O.
Rezepova
, and
A. B.
Slobodyuk
, “
Effect of annealing temperature on the structure and electrochemistry of LiVO3
,”
Electrochim. Acta
167
,
75
(
2015
).
13.
S.
Yang
,
Z.
Xu
,
C.
Pei
,
D.
Zhang
,
T.
Li
,
T.
Xiao
, and
S.
Ni
, “
Bio-template synthesis of LiVO3 anode material for high-rate and long-life lithium-ion batteries
,”
Ionics
28
,
4959
(
2022
).
14.
L.
Chen
,
H.
Wu
,
H.
Wang
,
L.
Chen
,
X.
Pu
, and
Z.
Chen
, “
Tailoring NaVO3 as a novel stable cathode for lithium rechargeable batteries
,”
Electrochim. Acta
307
,
224
(
2019
).
15.
H.
Zhao
,
L.
Liu
,
X.
Zhang
,
R.
Gao
,
Z.
Hu
, and
X.
Liu
, “
Facile synthesis of carbon-coated LiVO3 with enhanced electrochemical performances as cathode materials for lithium-ion batteries
,”
Ceram. Int.
43
,
2343
(
2017
).
16.
R. D.
Shannon
and
C.
Calvo
, “
Crystal structure of LiVO3
,”
Can. J. Chem.
51
,
265
(
1973
).
17.
K.
Li
,
L.
Cao
,
Z.
Huang
,
L.
Chen
,
Z.
Chen
, and
C.
Fu
, “
Novel cathode materials LixNa2−xV2O6 (x= 2, 1.4, 1, 0) for high-performance lithium-ion batteries
,”
J. Power Sources
344
,
25
(
2017
).
18.
C.
Muller
,
J.-C.
Valmalette
,
J.-L.
Soubeyroux
,
F.
Bouree
, and
J.-R.
Gavarri
, “
Structural disorder and ionic conductivity in LiVO3: A neutron powder diffraction study from 340 to 890 K
,”
J. Solid State Chem.
156
,
379
(
2001
).
19.
A. P.
Kashid
,
V. V.
Patil
, and
S. H.
Chavan
, “
Pyroelectric properties of Gd-doped KVO3 and LiVO3
,”
Bull. Mater. Sci.
12
,
57
(
1989
).
20.
S. H.
Chavan
and
A. P.
Kashid
, “
Pyroelectric studies on ferroelectric lithium vanadate doped with ferric oxide
,”
Ferroelectrics
102
,
199
(
1990
).
21.
Y.
Li
,
Y.
Han
,
Y.
Ma
,
P.
Zhu
,
X.
Wang
, and
C.
Gao
, “
Pressure effects on grain boundary, electrical and vibrational properties of the polycrystalline BaTeO3
,”
Europhys. Lett.
98
,
66006
(
2012
).
22.
J.
Zhao
,
N. L.
Ross
, and
R. J.
Angel
, “
Polyhedral control of the rhombohedral to cubic phase transition in LaAlO3 perovskite
,”
J. Phys.: Condens. Matter
16
,
8763
(
2004
).
23.
P.
Bouvier
and
J.
Kreisel
, “
Pressure-induced phase transition in LaAlO3
,”
J. Phys.: Condens. Matter
14
,
3981
(
2002
).
24.
M.
Guennou
,
P.
Bouvier
,
G.
Garbarino
, and
J.
Kreisel
, “
Structural investigation of LaAlO3 up to 63 GPa
,”
J. Phys.: Condens. Matter
23
,
395401
(
2011
).
25.
X.
Zhao
,
J.
Cai
,
D.
Jiang
,
M.
Cao
,
L.
Zhao
, and
Y.
Han
, “
Pressure-induced ionic-polaronic-ionic transition in LaAlO3
,”
Appl. Phys. Lett.
122
,
262101
(
2023
).
26.
S. H.
Tang
,
Z. X.
Shen
,
C. W.
Ong
, and
M. H.
Kuok
, “
Raman spectroscopic study of LiVO3 and LiVO3⋅ 2H2O
,”
J. Mol. Struct.
354
,
29
(
1995
).
27.
Z. X.
Shen
,
C. W.
Ong
,
M. H.
Kuok
, and
S. H.
Tang
, “
High-pressure phase transitions and pressure-induced amorphization in LiVO3
,”
J. Phys.: Condens. Matter
7
,
939
(
1995
).
28.
A.
Grzechnik
and
P. F.
McMillan
, “
High temperature and high pressure Raman study of LiVO3
,”
J. Phys. Chem. Solids
56
,
159
(
1995
).
29.
C.
Prescher
and
V. B.
Prakapenka
, “
DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration
,”
High Pressure Res.
35
,
223
(
2015
).
30.
B. H.
Toby
and
R. B.
Von Dreele
, “
GSAS-II: The genesis of a modern open-source all purpose crystallography software package
,”
J. Appl. Crystallogr.
46
,
544
(
2013
).
31.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
32.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
(
2012
).
33.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
, “
Particle-swarm structure prediction on clusters
,”
J. Chem. Phys.
137
,
084104
(
2012
).
34.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
35.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
38.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
39.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.-Cryst. Mater.
220
,
567
(
2005
).
40.
L.
Zhao
,
H.
Liu
,
S.
Tong
,
J.
Wang
,
T.
Han
,
C.
Liu
,
C.
Gao
, and
Y.
Han
, “
Application of impedance spectroscopy in exploring electrical properties of dielectric materials under high pressure
,”
J. Phys.: Condens. Matter
34
,
434001
(
2022
).
41.
Q.
Wang
,
C.
Liu
,
Y.
Han
,
C.
Gao
, and
Y.
Ma
, “
The determination of ionic transport properties at high pressures in a diamond anvil cell
,”
Rev. Sci. Instrum.
87
,
123904
(
2016
).
42.
D. L.
Sidebottom
, “
Colloquium: Understanding ion motion in disordered solids from impedance spectroscopy scaling
,”
Rev. Mod. Phys.
81
,
999
(
2009
).
43.
I.
Riess
, “
Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors
,”
Solid State Ionics
91
,
221
(
1996
).
44.
H. L.
Tuller
, “
Ionic conduction in nanocrystalline materials
,”
Solid State Ionics
131
,
143
(
2000
).
45.
Y.
Teraoka
,
H. M.
Zhang
,
K.
Okamoto
, and
N.
Yamazoe
, “
Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides
,”
Mater. Res. Bull.
23
,
51
(
1988
).
46.
J.
Wang
,
Y.
Yan
,
H.
Liu
,
G.
Zhang
,
D.
Yue
,
S.
Tong
,
C.
Gao
, and
Y.
Han
, “
Pressure-induced ionic to mixed ionic and electronic conduction transition in solid electrolyte LaF3
,”
Phys. Chem. Chem. Phys.
22
,
26306
(
2020
).

Supplementary Material

You do not currently have access to this content.