Multi-directional low-frequency vibration isolation is an unavoidable problem in many practical engineering scenarios. However, to date, most works are unable to achieve this goal, and those that can do so only to some degree, but their structure is complex and large, limiting the range of applications in practical engineering. Here, we propose a kind of quasi-zero stiffness (QZS) metamaterial constructed from a series of Kresling-pattern origami-inspired structures, whose simple topology with reasonable design parameters can obtain the expected QZS features. Moreover, the decoupling strategy adopted by the proposed QZS metamaterials allows for the independent motion of adjacent unit cells, resulting in an improvement in controllability and programmability. We demonstrate, both in simulations and experiments, the design process and the multi-directional low-frequency vibration isolation characteristics of the proposed QZS metamaterial. This study provides a method for realizing multi-directional low-frequency vibration isolation, expanding the application potential of QZS metamaterials for broader needs.

1.
L.
Wu
,
Y.
Wang
,
Z.
Zhai
,
Y.
Yang
,
D.
Krishnaraju
,
J.
Lu
,
F.
Wu
,
Q.
Wang
, and
H.
Jiang
,
Appl. Mater. Today
20
,
100671
(
2020
).
2.
Y.
Liu
,
L.
Xu
,
C.
Song
,
H.
Gu
, and
W.
Ji
,
Arch. Appl. Mech.
89
,
1743
1759
(
2019
).
3.
T. D.
Le
and
K. K.
Ahn
,
Int. J. Mech. Sci.
70
,
99
112
(
2013
).
4.
H.
Ding
,
J.
Ji
, and
L.-Q.
Chen
,
Mech. Syst. Signal Process.
121
,
675
688
(
2019
).
5.
Q.
Wang
,
J.
Zhou
,
D.
Xu
, and
H.
Ouyang
,
Mech. Syst. Signal Process.
139
,
106633
(
2020
).
6.
I.
Kovacic
,
M. J.
Brennan
, and
T. P.
Waters
,
J. Sound Vib.
315
,
700
711
(
2008
).
7.
A.
Carrella
,
M. J.
Brennan
, and
T. P.
Waters
,
J. Sound Vib.
301
,
678
689
(
2007
).
8.
A. O.
Oyelade
,
Adv. Mech. Eng.
11
,
1
10
(
2019
).
9.
H.
Meng
,
X.
Huang
,
Y.
Chen
,
S.
Theodossiades
, and
D.
Chronopoulos
,
Appl. Acoust.
182
,
108240
(
2021
).
10.
A. A.
Sarlis
,
D. T. R.
Pasala
,
M. C.
Constantinou
,
A. M.
Reinhorn
,
S.
Nagarajaiah
, and
D. P.
Taylor
,
J. Struct. Eng.
139
,
1124
1133
(
2013
).
11.
O.
Montenbruck
,
P.
Steigenberger
, and
F.
Darugna
,
Adv. Space Res.
59
,
2088
2100
(
2017
).
12.
C.
Liu
,
R.
Zhao
,
K.
Yu
, and
B.
Liao
,
Appl. Math. Model.
96
,
497
522
(
2021
).
13.
C.
Cai
,
J.
Zhou
,
L.
Wu
,
K.
Wang
,
D.
Xu
, and
H.
Ouyang
,
Compos. Struct.
236
,
111862
(
2020
).
14.
S.
Guo
,
R.
Gao
,
X.
Tian
, and
S.
Liu
,
Eng. Struct.
280
,
115687
(
2023
).
15.
J. H.
Oh
and
B.
Assouar
,
Sci. Rep.
6
,
33410
(
2016
).
16.
Y.
Chai
and
X.
Jing
,
Nonlinear Dyn.
109
,
2383
2421
(
2022
).
17.
Y.
Chai
,
X.
Jing
, and
Y.
Guo
,
Mech. Syst. Signal Process.
168
,
108651
(
2022
).
18.
C.-g.
Shuai
,
B.-y.
Li
, and
J.-g.
Ma
,
Acta Mech.
233
,
5199
5214
(
2022
).
19.
J.
Zheng
,
X.
Yang
,
J.
Xu
,
W.
Zhou
,
Y.
Lu
, and
L.
Liu
,
Iran. J. Sci. Technol., Trans. Mech. Eng.
45
,
597
609
(
2021
).
20.
S.
Fang
,
K.
Chen
,
B.
Zhao
,
Z.
Lai
,
S.
Zhou
, and
W.-H.
Liao
,
J. Sound Vib.
553
,
117684
(
2023
).
21.
Z.-L.
Xu
,
Y.-Q.
Wang
,
R.
Zhu
, and
K.-C.
Chuang
,
J. Appl. Phys
130
,
045105
(
2021
).
22.
Z.
Zhai
,
L.
Wu
, and
H.
Jiang
,
Appl. Phys. Rev.
8
,
041319
(
2021
).
23.
H.
Yasuda
,
T.
Tachi
,
M.
Lee
, and
J.
Yang
,
Nat. Commun.
8
,
962
(
2017
).
24.
H.
Yasuda
,
Y.
Miyazawa
,
E. G.
Charalampidis
,
C.
Chong
,
P. G.
Kevrekidis
, and
J.
Yang
,
Sci. Adv.
5
,
eaau2835
(
2019
).
25.
H.
Han
,
L.
Tang
,
J.
Wu
,
S.
Sun
,
P.
Yin
, and
D.
Cao
,
Aerosp. Sci. Technol.
140
,
108438
(
2023
).
26.
C.
Zhang
,
Z.
Zhang
,
Y.
Peng
,
Y.
Zhang
,
S.
An
,
Y.
Wang
,
Z.
Zhai
,
Y.
Xu
, and
H.
Jiang
,
Nat. Commun.
14
,
4329
(
2023
).
27.
Z.-L.
Xu
,
Y.-Q.
Wang
,
R.
Zhu
, and
K.-C.
Chuang
,
J. Appl. Phys.
130
,
045105
(
2021
).
28.
M.
Zhang
,
J.
Yang
, and
R.
Zhu
,
J. Appl. Mech.
88
,
051009
(
2021
).
29.
R.
Masana
,
S.
Khazaaleh
,
H.
Alhussein
,
R. S.
Crespo
, and
M. F.
Daqaq
,
Appl. Phys. Lett.
117
,
081901
(
2020
).
30.
Y.
Miyazawa
,
C.-W.
Chen
,
R.
Chaunsali
,
T. S.
Gormley
,
G.
Yin
,
G.
Theocharis
, and
J.
Yang
,
Commun. Mater.
3
,
62
(
2022
).
31.
M.
Li
,
Z.
Zhou
,
B.
Hao
,
C.
Yu
,
Y.
Chen
, and
J.
Ma
,
Thin-Walled Struct.
188
,
110859
(
2023
).
32.
P.
Zhao
,
K.
Zhang
,
L.
Qi
, and
Z.
Deng
,
Mech. Syst. Signal Process.
180
,
109430
(
2022
).
33.
X.
Yang
and
S.
Keten
,
J Appl. Mech.
88
,
091009
(
2021
).
34.
C.
Yin
,
Y.
Xiao
,
D.
Zhu
,
J.
Wang
, and
Q.-H.
Qin
,
Thin-Walled Struct.
179
,
109600
(
2022
).
35.
A.
Bergamini
,
M.
Miniaci
,
T.
Delpero
,
D.
Tallarico
,
B.
Van Damme
,
G.
Hannema
,
I.
Leibacher
, and
A.
Zemp
,
Nat. Commun.
10
,
4525
(
2019
).
36.
P.
Zhao
,
K.
Zhang
,
L.
Qi
, and
Z.
Deng
,
Mech. Syst. Signal Process
180
,
109430
(
2022
).
37.
Q.
Zhang
,
D.
Guo
, and
G.
Hu
,
Adv. Funct. Mater.
31
,
2101428
(
2021
).

Supplementary Material

You do not currently have access to this content.