Resonances are fundamentally important in the field of nano-photonics and optics. Thus, it is of great interest to know what are the limits to which they can be tuned. The bandwidth of the resonances in materials is an important feature, which is commonly characterized by using the Q-factor. We present tight bounds correlating the peak absorption with the Q-factor of two-phase quasi-static metamaterials and plasmonic resonators evaluated at a given peak frequency by introducing an alternative definition for the Q-factor in terms of the complex effective permittivity of the composite material. This composite may consist of well-separated clusters of plasmonic particles, and, thus, we obtain bounds on the response of a single cluster as governed by the polarizability. Optimal metamaterial microstructure designs achieving points on the bounds are presented. The most interesting optimal microstructure is a limiting case of doubly coated ellipsoids that attains points on the lower bound. We also obtain bounds on Q for three dimensional, isotropic, and fixed volume fraction two-phase quasi-static metamaterials and particle clusters with an isotropic polarizability. Some almost optimal isotropic microstructure geometries are identified.

1.
S. A.
Maier
and
H. A.
Atwater
, “
Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures
,”
J. Appl. Phys.
98
,
011101
(
2005
).
2.
F.
Wang
and
Y. R.
Shen
, “
General properties of local plasmons in metal nanostructures
,”
Phys. Rev. Lett.
97
,
206806
(
2006
).
3.
R.
Collin
and
S.
Rothschild
, “
Evaluation of antenna Q
,”
IEEE Trans. Antennas Propag.
12
,
23
27
(
1964
).
4.
R.
Fante
, “
Quality factor of general ideal antennas
,”
IEEE Trans. Antennas Propag.
17
,
151
155
(
1969
).
5.
D. R.
Rhodes
, “
Observable stored energies of electromagnetic systems
,”
J. Franklin Inst.
302
,
225
237
(
1976
).
6.
A. D.
Yaghjian
and
S. R.
Best
, “
Impedance, bandwidth, and Q of antennas
,”
IEEE Trans. Antennas Propag.
53
,
1298
1324
(
2005
).
7.
M.
Gustafsson
and
S.
Nordebo
, “
Bandwidth, Q factor, and resonance models of antennas
,”
Prog. Electromagn. Res.
62
,
1
20
(
2006
).
8.
A.
Figotin
and
A.
Welters
, “
Dissipative properties of systems composed of high-loss and lossless components
,”
J. Math. Phys.
53
,
123508
(
2012
).
9.
L. J.
Chu
, “
Physical limitations of omni-directional antennas
,”
J. Appl. Phys.
19
,
1163
1175
(
1948
).
10.
H. R.
Stuart
, “
Bandwidth limitations in small antennas composed of negative permittivity materials and metamaterials
,” in
XXIX General Assembly of the International Union of Radio Science (URSI)
,
Chicago, IL
,
2008
.
11.
A. D.
Yaghjian
and
H. R.
Stuart
, “
Lower bounds on the Q of electrically small dipole antennas
,”
IEEE Trans. Antennas Propag.
58
,
3114
3121
(
2010
).
12.
M.
Gustafsson
and
S.
Nordebo
, “
Optimal antenna currents for Q, superdirectivity, and radiation patterns using convex optimization
,”
IEEE Trans. Antennas Propag.
61
,
1109
1118
(
2013
).
13.
M.
Gustafsson
,
M.
Cismasu
, and
B. L. G.
Jonsson
, “
Physical bounds and optimal currents on antennas
,”
IEEE Trans. Antennas Propag.
60
,
2672
2681
(
2012
).
14.
M.
Gustafsson
,
D.
Tayli
,
M.
Cismasu
, and
Z.
Chen
, “
Physical bounds of antennas
,” in
Handbook of Antenna Technologies
(
Springer
,
Singapore
,
2015
).
15.
B. L. G.
Jonsson
and
M.
Gustafsson
, “
Stored energies in electric and magnetic current densities for small antennas
,”
Proc. R. Soc. A
471
,
20140897
(
2015
).
16.
M.
Pascale
,
S. A.
Mann
,
D. C.
Tzarouchis
,
G.
Miano
,
A.
Alù
, and
C.
Forestiere
, “
Lower bounds to the Q factor of electrically small resonators through quasistatic modal expansion
,”
IEEE Trans. Antennas Propag.
71
,
4350
(
2023
).
17.
D. J.
Bergman
, “
The dielectric constant of a composite material—A problem in classical physics
,”
Phys. Rep.
43
,
377
407
(
1978
).
18.
G. W.
Milton
, “
Bounds on the complex dielectric constant of a composite material
,”
Appl. Phys. Lett.
37
,
300
302
(
1980
).
19.
O. D.
Miller
,
C. W.
Hsu
,
M. T. H.
Reid
,
W.
Qiu
,
B. G.
DeLacy
,
J. D.
Joannopoulos
,
M.
Soljačić
, and
S. G.
Johnson
, “
Fundamental limits to extinction by metallic nanoparticles
,”
Phys. Rev. Lett.
112
,
123903
(
2014
).
20.
G. W.
Milton
,
R. C.
McPhedran
, and
D. R.
McKenzie
, “
Transport properties of arrays of intersecting cylinders
,”
Appl. Phys.
25
,
23
30
(
1981
).
21.
G. W.
Milton
, “
Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion
,”
Phys. Rev. B
96
,
104206
(
2017
).
22.
G. W.
Milton
, “
Bounds on the complex permittivity of a two-component composite material
,”
J. Appl. Phys.
52
,
5286
5293
(
1981
).
23.
M.
Gustafsson
and
B. L. G.
Jonsson
, “
Stored electromagnetic energy and antenna Q
,”
Prog. Electromagn. Res.
150
,
13
27
(
2015
).
24.
K.
Schab
,
L.
Jelinek
,
M.
Capek
,
C.
Ehrenborg
,
D.
Tayli
,
G. A.
Vandenbosch
, and
M.
Gustafsson
, “
Energy stored by radiating systems
,”
IEEE Access
6
,
10553
10568
(
2018
).
25.
A.
Welters
,
Y.
Avniel
, and
S. G.
Johnson
, “
Speed-of-light limitations in passive linear media
,”
Phys. Rev. A
90
,
023847
(
2014
).
26.
G. W.
Milton
, “
Bounds on the transport and optical properties of a two-component composite material
,”
J. Appl. Phys.
52
,
5294
5304
(
1981
).
27.
G. W.
Milton
,
The Theory of Composites
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2022
).
28.
M. G.
Krein
and
A. A.
Nudelman
,
Translations of Mathematical Monographs
(
AMS
,
1977
) Vol.
50
, pp.
417
.
29.
G.
Milton
and
K.
Golden
, “
Thermal conduction in composites
,” in
Thermal Conductivity,
edited by T. Ashworth and D. R. Smith (
Springer
,
Boston, MA
,
1985
).
30.
D. J.
Bergman
, “
Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material
,”
Phys. Rev. Lett.
45
,
148
148
(
1980
).
31.
C.
Kern
,
O. D.
Miller
, and
G. W.
Milton
, “
Tight bounds on the effective complex permittivity of isotropic composites and related problems
,”
Phys. Rev. Appl.
14
,
054068
(
2020
).
32.
K.
Schulgasser
, “
Bounds on the conductivity of statistically isotropic polycrystals
,”
J. Phys. C
10
,
407
(
1977
).

Supplementary Material

You do not currently have access to this content.