Biomimetic scale-covered substrates are architected meta-structures exhibiting fascinating emergent nonlinearities via the geometry of collective scales contacts. Despite much progress in understanding their elastic nonlinearity, their dissipative behavior arising from scales sliding is relatively uninvestigated in the dynamic regime. Recently discovered is the phenomena of viscous emergence, where dry Coulomb friction between scales can lead to apparent viscous damping behavior of the overall multi-material substrate. In contrast to this structural dissipation, material dissipation common in many polymers has never been considered, especially synergistically with geometrical factors. This aspect is addressed here, where material viscoelasticity is introduced via a simple Kelvin–Voigt model for brevity and clarity. The results contrast the two damping sources in these architectured systems: material viscoelasticity and geometrical frictional scales contact. It is discovered that although topically similar in effective damping, viscoelastic damping follows a different damping envelope than dry friction, including starkly different effects on damping symmetry and specific damping capacity.

1.
G. N.
S
and
B. R. R.
J
,
Biomimetic Intell. Rob.
2
,
100045
(
2022
).
2.
M.
Muthuramalingam
,
D. K.
Puckert
,
U.
Rist
, and
C.
Bruecker
,
Sci. Rep.
10
(
1
),
14534
(
2020
).
3.
J.
Han
,
Z.
Hui
,
F.
Tian
, and
G.
Chen
,
Chin. J. Aeronaut.
34
,
170
(
2021
).
4.
J. B. R.
Rose
,
S. G.
Natarajan
, and
V. T.
Gopinathan
,
Rev. Environ. Sci. Bio/Technol.
20
,
645
(
2021
).
5.
B.
Jenett
,
S.
Calisch
,
D.
Cellucci
,
N.
Cramer
,
N.
Gershenfeld
,
S.
Swei
, and
K. C.
Cheung
,
Soft Rob.
4
,
33
(
2017
).
6.
J.
Long
,
M.
Hale
,
M.
Mchenry
, and
M.
Westneat
,
J. Exp. Biol.
199
,
2139
(
1996
).
7.
See https://flic.kr/p/6vymdB for
A.
Aini
, “
Sting & aro
” (
2008
) (accessed June 23, 2022).
8.
R.
Ghosh
,
H.
Ebrahimi
, and
A.
Vaziri
,
Appl. Phys. Lett.
105
,
233701
(
2014
).
9.
H.
Ebrahimi
,
H.
Ali
,
R. A.
Horton
,
J.
Galvez
,
A. P.
Gordon
, and
R.
Ghosh
,
Europhys. Lett.
127
,
24002
(
2019
).
10.
H.
Ali
,
H.
Ebrahimi
, and
R.
Ghosh
,
Int. J. Solids Struct.
166
,
22
(
2019
).
11.
A. E.
Dien
,
J. East Asian Archeaol.
2
,
1
(
2000
).
12.
B. J.
Bruet
,
J.
Song
,
M. C.
Boyce
, and
C.
Ortiz
,
Nat. Mater.
7
,
748
(
2008
).
13.
R.
Martini
,
Y.
Balit
, and
F.
Barthelat
,
Acta Biomater.
55
,
360
(
2017
).
14.
H.
Ehrlich
,
Biological Materials of Marine Origin
(
Springer
,
2015
), pp.
237
262
.
15.
Z. W.
White
and
F. J.
Vernerey
,
Bioinspiration Biomimetics
13
,
041004
(
2018
).
16.
A.
Browning
,
C.
Ortiz
, and
M. C.
Boyce
,
J. Mech. Behav. Biomed. Mater.
19
,
75
(
2013
).
17.
S.
Rudykh
and
M. C.
Boyce
,
IMA J. Appl. Math.
79
,
830
(
2014
).
18.
S.
Rudykh
,
C.
Ortiz
, and
M. C.
Boyce
,
Soft Matter
11
,
2547
(
2015
).
19.
B.
Wang
,
W.
Yang
,
V. R.
Sherman
, and
M. A.
Meyers
,
Acta Biomater.
41
,
60
(
2016
).
20.
W.
Yang
,
I. H.
Chen
,
B.
Gludovatz
,
E. A.
Zimmermann
,
R. O.
Ritchie
, and
M. A.
Meyers
,
Adv. Mater.
25
,
31
(
2013
).
21.
R.
Ghosh
,
H.
Ebrahimi
, and
A.
Vaziri
,
Europhys. Lett.
113
,
34003
(
2016
).
22.
H.
Ebrahimi
,
H.
Ali
, and
R.
Ghosh
,
Bioinspiration Biomimetics
15
,
056013
(
2020
).
23.
H.
Ali
,
H.
Ebrahimi
,
J.
Stephen
,
P.
Warren
, and
R.
Ghosh
, AIAA Paper No. 2020-1551,
2020
, p.
1551
.
24.
H.
Ali
,
H.
Ebrahimi
, and
R.
Ghosh
,
Sci. Rep.
9
,
14628
(
2019
).
25.
S.
Dharmavaram
,
H.
Ebrahimi
, and
R.
Ghosh
,
J. Mech. Phys. Solids
159
,
104711
(
2022
).
26.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
1980
).
27.
G.
Polacco
,
J.
Stastna
,
D.
Biondi
, and
L.
Zanzotto
,
Curr. Opinion Colloid Interface Sci.
11
,
230
(
2006
).
28.
A.
Craifaleanu
,
N.
Orăşanu
, and
C.
Dragomirescu
,
Applied Mechanics and Materials
(
Trans Tech Publications
,
2015
), Vol.
762
, pp.
47
54
.
29.
J.
Freundlich
,
J. Sound Vib.
438
,
99
(
2019
).
30.
H.
Ali
,
H.
Ebrahimi
, and
R.
Ghosh
,
Mech. Soft Mater.
1
,
1
(
2019
).
31.
MatWeb (2022)
. “
Overview of materials for silicone rubber
,” MatWeb, Dataset, see https://www.matweb.com/search/datasheet.aspx?matguid=cbe7a469897a47eda563816c86a73520 (accessed February 3, 2022).
32.
R.
Suriano
,
O.
Boumezgane
,
C.
Tonelli
, and
S.
Turri
,
Polym. Adv. Technol.
31
,
3247
(
2020
).
33.
F. J.
Vernerey
and
F.
Barthelat
,
Int. J. Solids Struct.
47
,
2268
(
2010
).
34.
M.
Javadi
and
M.
Rahmanian
,
Commun. Nonlinear Sci. Numer. Simul.
98
,
105784
(
2021
).
35.
J.
Diani
,
C. R. Méc.
348
,
797
(
2021
).
36.
N.
Abhyankar
,
E.
Hall
, and
S.
Hanagud
,
J. Appl. Mech.
60
,
167
(
1993
).
37.
S. S.
Rao
,
Vibration of Continuous Systems
(
Wiley
,
2019
).
38.
J.
Zhang
,
R.
Perez
, and
E.
Lavernia
,
J. Mater. Sci.
28
,
2395
(
1993
).
39.
R.
Ghosh
,
H.
Ebrahimi
, and
A.
Vaziri
,
J. Mech. Behav. Biomed. Mater.
72
,
1
(
2017
).

Supplementary Material

You do not currently have access to this content.