Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here, we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D coupled-cavity array with disordered gain and loss. Topological photonic states can be induced by increasing gain-loss disorder strength with topological invariants carried by localized states in the complex bulk spectra. The system showcases rich phase diagrams and distinct topological states from Hermitian disorders. The non-Hermitian critical behavior is characterized by the biorthogonal localization length of zero-energy edge modes, which diverges at the critical transition point and establishes the bulk-edge correspondence. Furthermore, we show that the bulk topology may be experimentally accessed by measuring the biorthogonal chiral displacement, which can be extracted from a proper Ramsey interferometer that works in both clean and disordered regions. The proposed coupled-cavity photonic setup relies on techniques that have been experimentally demonstrated and, thus, provides a feasible route toward exploring such non-Hermitian disorder driven topological insulators.

1.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
(
2010
).
2.
M.
Hasan
and
C.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
(
2011
).
4.
C.-K.
Chiu
,
J. C. Y.
Teo
,
A. P.
Schnyder
, and
S.
Ryu
, “
Classification of topological quantum matter with symmetries
,”
Rev. Mod. Phys.
88
,
035005
(
2016
).
5.
C. L.
Kane
and
E. J.
Mele
, “
Z 2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
6.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
(
2006
).
7.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
(
2007
).
8.
M.
Aidelsburger
,
M.
Atala
,
M.
Lohse
,
J. T.
Barreiro
,
B.
Paredes
, and
I.
Bloch
, “
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices
,”
Phys. Rev. Lett.
111
,
185301
(
2013
).
9.
H.
Miyake
,
G. A.
Siviloglou
,
C. J.
Kennedy
,
W. C.
Burton
, and
W.
Ketterle
, “
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices
,”
Phys. Rev. Lett.
111
,
185302
(
2013
).
10.
G.
Jotzu
,
M.
Messer
,
R.
Desbuquois
,
M.
Lebrat
,
T.
Uehlinger
,
D.
Greif
, and
T.
Esslinger
, “
Experimental realization of the topological Haldane model with ultracold fermions
,”
Nature
515
,
237
(
2014
).
11.
N.
Goldman
,
J. C.
Budich
, and
P.
Zoller
, “
Topological quantum matter with ultracold gases in optical lattices
,”
Nat. Phys.
12
,
639
(
2016
).
12.
N. R.
Cooper
,
J.
Dalibard
, and
I. B.
Spielman
, “
Topological bands for ultracold atoms
,”
Rev. Mod. Phys.
91
,
015005
(
2019
).
13.
F. D. M.
Haldane
and
S.
Raghu
, “
Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
,”
Phys. Rev. Lett.
100
,
013904
(
2008
).
14.
M.
Hafezi
,
E. A.
Demler
,
M. D.
Lukin
, and
J. M.
Taylor
, “
Robust optical delay lines with topological protection
,”
Nat. Phys.
7
,
907
(
2011
).
15.
K.
Fang
,
Z.
Yu
, and
S.
Fan
, “
Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
,”
Nat. Photonics
6
,
782
(
2012
).
16.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photonics
8
,
821
(
2014
).
17.
Y. E.
Kraus
,
Y.
Lahini
,
Z.
Ringel
,
M.
Verbin
, and
O.
Zilberberg
, “
Topological states and adiabatic pumping in quasicrystals
,”
Phys. Rev. Lett.
109
,
106402
(
2012
).
18.
M.
Hafezi
,
S.
Mittal
,
J.
Fan
,
A.
Migdall
, and
J. M.
Taylor
, “
Imaging topological edge states in silicon photonics
,”
Nat. Photonics
7
,
1001
(
2013
).
19.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
20.
G.
Ma
,
M.
Xiao
, and
C. T.
Chan
, “
Topological phases in acoustic and mechanical systems
,”
Nat. Rev. Phys.
1
,
281
(
2019
).
21.
C. M.
Bender
, “
Making sense of non-Hermitian Hamiltonians
,”
Rep. Prog. Phys.
70
,
947
(
2007
).
22.
V. M.
Martinez Alvarez
,
J. E.
Barrios Vargas
,
M.
Berdakin
, and
L. E. F.
Foa Torres
, “
Topological states of non-Hermitian systems
,”
Eur. Phys. J. Spec. Top.
227
,
1295
(
2018
).
23.
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
Beam dynamics in P T symmetric optical lattices
,”
Phys. Rev. Lett.
100
,
103904
(
2008
).
24.
A.
Regensburger
,
C.
Bersch
,
M.-A.
Miri
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Parity-time synthetic photonic lattices
,”
Nature
488
,
167
(
2012
).
25.
S.
Malzard
,
C.
Poli
, and
H.
Schomerus
, “
Topologically protected defect states in open photonic systems with Non-Hermitian charge-conjugation and parity-time symmetry
,”
Phys. Rev. Lett.
115
,
200402
(
2015
).
26.
Y. N.
Joglekar
and
A. K.
Harter
, “
Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems
,”
Photonics Res.
6
,
A51
(
2018
).
27.
H.
Jing
,
S. K.
Özdemir
,
X.-Y.
,
J.
Zhang
,
L.
Yang
, and
F.
Nori
, “
P T-symmetric phonon laser
,”
Phys. Rev. Lett.
113
,
053604
(
2014
).
28.
B.
Peng
,
ŞK.
Özdemir
,
S.
Rotter
,
H.
Yilmaz
,
M.
Liertzer
,
F.
Monifi
,
C. M.
Bender
,
F.
Nori
, and
L.
Yang
, “
Loss-induced suppression and revival of lasing
,”
Science
346
,
328
(
2014
).
29.
J. M.
Zeuner
,
M. C.
Rechtsman
,
Y.
Plotnik
,
Y.
Lumer
,
S.
Nolte
,
M. S.
Rudner
,
M.
Segev
, and
A.
Szameit
, “
Observation of a topological transition in the bulk of a non-Hermitian system
,”
Phys. Rev. Lett.
115
,
040402
(
2015
).
30.
S.
Weimann
,
M.
Kremer
,
Y.
Plotnik
,
Y.
Lumer
,
S.
Nolte
,
K. G.
Makris
,
M.
Segev
,
M. C.
Rechtsman
, and
A.
Szameit
, “
Topologically protected bound states in photonic parity-time-symmetric crystals
,”
Nat. Mater.
16
,
433
(
2017
).
31.
H.
Zhao
,
P.
Miao
,
M. H.
Teimourpour
,
S.
Malzard
,
R.
El-Ganainy
,
H.
Schomerus
, and
L.
Feng
, “
Topological hybrid silicon microlasers
,”
Nat. Commun.
9
,
981
(
2018
).
32.
M.
Parto
,
S.
Wittek
,
H.
Hodaei
,
G.
Harari
,
M. A.
Bandres
,
J.
Ren
,
M. C.
Rechtsman
,
M.
Segev
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Edge-mode lasing in 1D topological active arrays
,”
Phys. Rev. Lett.
120
,
113901
(
2018
).
33.
P.
St-Jean
,
V.
Goblot
,
E.
Galopin
,
A.
Lemaître
,
T.
Ozawa
,
L.
Le Gratiet
,
I.
Sagnes
,
J.
Bloch
, and
A.
Amo
, “
Lasing in topological edge states of a one-dimensional lattice
,”
Nat. Photonics
11
,
651
(
2017
).
34.
M. A.
Bandres
,
S.
Wittek
,
G.
Harari
,
M.
Parto
,
J.
Ren
,
M.
Segev
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Topological insulator laser: Experiments
,”
Science
359
,
eaar4005
(
2018
).
35.
M.
Müller
,
S.
Diehl
,
G.
Pupillo
, and
P.
Zoller
, “
Engineered open systems and quantum simulations with atoms and ions
,”
Adv. At. Mol. Opt. Phys.
61
,
1
(
2012
).
36.
Y.
Ashida
,
S.
Furukawa
, and
M.
Ueda
, “
Parity-time-symmetric quantum critical phenomena
,”
Nat. Commun.
8
,
15791
(
2017
).
37.
H.
Shen
and
L.
Fu
, “
Quantum oscillation from in-gap states and a non-Hermitian Landau level problem
,”
Phys. Rev. Lett.
121
,
026403
(
2018
).
38.
M.
Papaj
,
H.
Isobe
, and
L.
Fu
, “
Nodal arc of disordered Dirac fermions and non-Hermitian band theory
,”
Phys. Rev. B
99
,
201107
(
2019
).
39.
T.
Yoshida
,
R.
Peters
, and
N.
Kawakami
, “
Non-Hermitian perspective of the band structure in heavy-fermion systems
,”
Phys. Rev. B
98
,
035141
(
2018
).
40.
Y.
Xu
,
S.-T.
Wang
, and
L.-M.
Duan
, “
Weyl exceptional rings in a three-dimensional dissipative cold atomic gas
,”
Phys. Rev. Lett.
118
,
045701
(
2017
).
41.
J.
Li
,
A. K.
Harter
,
J.
Liu
,
L.
de Melo
,
Y. N.
Joglekar
, and
L.
Luo
, “
Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms
,”
Nat. Commun.
10
,
855
(
2019
).
42.
S.
Lapp
,
J.
Ang'ong'a
,
F. A.
An
, and
B.
Gadway
, “
Engineering tunable local loss in a synthetic lattice of momentum states
,”
New J. Phys.
21
,
045006
(
2019
).
43.
T.
Helbig
,
T.
Hofmann
,
S.
Imhof
,
M.
Abdelghany
,
T.
Kiessling
,
L. W.
Molenkamp
,
C. H.
Lee
,
A.
Szameit
,
M.
Greiter
, and
R.
Thomale
, “
Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits
,”
Nat. Phys.
16
,
747
(
2020
).
44.
K.
Esaki
,
M.
Sato
,
K.
Hasebe
, and
M.
Kohmoto
, “
Edge states and topological phases in non-Hermitian systems
,”
Phys. Rev. B
84
,
205128
(
2011
).
45.
A. K.
Harter
,
T. E.
Lee
, and
Y. N.
Joglekar
, “
P T-breaking threshold in spatially asymmetric Aubry-André and Harper models: Hidden symmetry and topological states
,”
Phys. Rev. A
93
,
062101
(
2016
).
46.
T. E.
Lee
, “
Anomalous edge state in a non-Hermitian lattice
,”
Phys. Rev. Lett.
116
,
133903
(
2016
).
47.
S.
Yao
,
F.
Song
, and
Z.
Wang
, “
Non-Hermitian Chern bands
,”
Phys. Rev. Lett.
121
,
136802
(
2018
).
48.
S.
Yao
and
Z.
Wang
, “
Edge states and topological invariants of non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
086803
(
2018
).
49.
F. K.
Kunst
,
E.
Edvardsson
,
J. C.
Budich
, and
E. J.
Bergholtz
, “
Biorthogonal bulk-boundary correspondence in non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
026808
(
2018
).
50.
K.
Takata
and
M.
Notomi
, “
Photonic topological insulating phase induced solely by gain and loss
,”
Phys. Rev. Lett.
121
,
213902
(
2018
).
51.
Z.
Gong
,
Y.
Ashida
,
K.
Kawabata
,
K.
Takasan
,
S.
Higashikawa
, and
M.
Ueda
, “
Topological phases of non-Hermitian systems
,”
Phys. Rev. X
8
,
031079
(
2018
).
52.
Y.
Xiong
, “
Why does bulk boundary correspondence fail in some non-Hermitian topological models
,”
J. Phys. Commun.
2
,
035043
(
2018
).
53.
S.
Lieu
, “
Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
,”
Phys. Rev. B
97
,
045106
(
2018
).
54.
D.
Leykam
,
K. Y.
Bliokh
,
C.
Huang
,
Y. D.
Chong
, and
F.
Nori
, “
Edge modes, degeneracies, and topological numbers in non-Hermitian systems
,”
Phys. Rev. Lett.
118
,
040401
(
2017
).
55.
H.
Shen
,
B.
Zhen
, and
L.
Fu
, “
Topological band theory for non-Hermitian Hamiltonians
,”
Phys. Rev. Lett.
120
,
146402
(
2018
).
56.
H.
Zhou
,
C.
Peng
,
Y.
Yoon
,
C. W.
Hsu
,
K. A.
Nelson
,
L.
Fu
,
J. D.
Joannopoulos
,
M.
Soljačić
, and
B.
Zhen
, “
Observation of bulk Fermi arc and polarization half charge from paired exceptional points
,”
Science
359
,
1009
(
2018
).
57.
A.
Cerjan
,
S.
Huang
,
K. P.
Chen
,
Y.
Chong
, and
M. C.
Rechtsman
, “
Experimental realization of a Weyl exceptional ring
,” arXiv:1808.09541 (
2018
).
58.
K.
Kawabata
,
S.
Higashikawa
,
Z.
Gong
,
Y.
Ashida
, and
M.
Ueda
, “
Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics
,”
Nat. Commun.
10
,
297
(
2019
).
59.
A.
Cerjan
,
M.
Xiao
,
L.
Yuan
, and
S.
Fan
, “
Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges
,”
Phys. Rev. B
97
,
075128
(
2018
).
60.
L.
Jin
and
Z.
Song
, “
Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry
,”
Phys. Rev. B
99
,
081103
(
2019
).
61.
C. H.
Lee
,
G.
Li
,
Y.
Liu
,
T.
Tai
,
R.
Thomale
, and
X.
Zhang
, “
Tidal surface states as fingerprints of non-Hermitian nodal knot metals
,” arXiv:1812.02011 (
2018
).
62.
C. H.
Lee
and
R.
Thomale
, “
Anatomy of skin modes and topology in non-Hermitian systems
,”
Phys. Rev. B
99
,
201103
(
2019
).
63.
D. S.
Borgnia
,
A. J.
Kruchkov
, and
R.-J.
Slager
, “
Non-Hermitian boundary modes
,” arXiv:1902.07217 (
2019
).
64.
L.
Li
,
C. H.
Lee
, and
J.
Gong
, “
Geometric characterization of non-Hermitian topological systems through the singularity ring in pseudospin vector space
,”
Phys. Rev. B
100
,
075403
(
2019
).
65.
X. M.
Yang
,
P.
Wang
,
L.
Jin
, and
Z.
Song
, “
Visualizing topology of real-energy gapless phase arising from exceptional point
,” arXiv:1905.07109 (
2019
).
66.
F.
Song
,
S.
Yao
, and
Z.
Wang
, “
Non-Hermitian skin effect and chiral damping in open quantum systems
,”
Phys. Rev. Lett.
123
,
170401
(
2019
).
67.
F.
Song
,
S.
Yao
, and
Z.
Wang
, “
Non-Hermitian topological invariants in real space
,”
Phys. Rev. Lett.
123
,
246801
(
2019
).
68.
K. L.
Zhang
,
H. C.
Wu
,
L.
Jin
, and
Z.
Song
, “
Topological phase transition independent of system non-Hermiticity
,”
Phys. Rev. B
100
,
045141
(
2019
).
69.
X.
Qiu
,
T.-S.
Deng
,
Y.
Hu
,
P.
Xue
, and
W.
Yi
, “
Fixed points and dynamic topological phenomena in a parity-time-symmetric quantum quench
,”
iScience
20
,
392
(
2019
).
70.
K.
Wang
,
X.
Qiu
,
L.
Xiao
,
X.
Zhan
,
Z.
Bian
,
B. C.
Sanders
,
W.
Yi
, and
P.
Xue
, “
Observation of emergent momentum-time skyrmions in parity-time-symmetric non-unitary quench dynamics
,”
Nat. Commun.
10
,
2293
(
2019
).
71.
L.
Xiao
,
T.
Deng
,
K.
Wang
,
G.
Zhu
,
Z.
Wang
,
W.
Yi
, and
P.
Xue
, “
Observation of non-Hermitian bulk-boundary correspondence in quantum dynamics
,” arXiv:1907.12566 (
2019
).
72.
L.
Li
,
C. H.
Lee
, and
J.
Gong
, “
Topology-induced spontaneous non-reciprocal pumping in cold-atom systems with loss
,” arXiv:1910.03229 (
2019
).
73.
X.-R.
Wang
,
C.-X.
Guo
, and
S.-P.
Kou
, “
Defective edge states and anomalous bulk-boundary correspondence in non-Hermitian topological systems
,” arXiv:1912.04024 (
2019
).
74.
P. W.
Anderson
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
,
1492
(
1958
).
75.
D. S.
Fisher
, “
Random antiferromagnetic quantum spin chains
,”
Phys. Rev. B
50
,
3799
(
1994
).
76.
M.
Onoda
,
Y.
Avishai
, and
N.
Nagaosa
, “
Localization in a quantum spin Hall system
,”
Phys. Rev. Lett.
98
,
076802
(
2007
).
77.
D. N.
Sheng
,
Z. Y.
Weng
,
L.
Sheng
, and
F. D. M.
Haldane
, “
Quantum spin-Hall effect and topologically invariant Chern numbers
,”
Phys. Rev. Lett.
97
,
036808
(
2006
).
78.
E.
Prodan
,
T. L.
Hughes
, and
B. A.
Bernevig
, “
Entanglement spectrum of a disordered topological Chern insulator
,”
Phys. Rev. Lett.
105
,
115501
(
2010
).
79.
J.
Li
,
R.-L.
Chu
,
J. K.
Jain
, and
S.-Q.
Shen
, “
Topological Anderson insulator
,”
Phys. Rev. Lett.
102
,
136806
(
2009
).
80.
H.
Jiang
,
L.
Wang
,
Q.-F.
Sun
, and
X. C.
Xie
, “
Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells
,”
Phys. Rev. B
80
,
165316
(
2009
).
81.
C. W.
Groth
,
M.
Wimmer
,
A. R.
Akhmerov
,
J.
Tworzydło
, and
C. W. J.
Beenakker
, “
Theory of the topological Anderson insulator
,”
Phys. Rev. Lett.
103
,
196805
(
2009
).
82.
H.-M.
Guo
,
G.
Rosenberg
,
G.
Refael
, and
M.
Franz
, “
Topological Anderson insulator in three dimensions
,”
Phys. Rev. Lett.
105
,
216601
(
2010
).
83.
A.
Altland
,
D.
Bagrets
,
L.
Fritz
,
A.
Kamenev
, and
H.
Schmiedt
, “
Quantum criticality of quasi-one-dimensional topological Anderson insulators
,”
Phys. Rev. Lett.
112
,
206602
(
2014
).
84.
P.
Titum
,
N. H.
Lindner
,
M. C.
Rechtsman
, and
G.
Refael
, “
Disorder-induced Floquet topological insulators
,”
Phys. Rev. Lett.
114
,
056801
(
2015
).
85.
C.
Liu
,
W.
Gao
,
B.
Yang
, and
S.
Zhang
, “
Disorder-induced topological state transition in photonic metamaterials
,”
Phys. Rev. Lett.
119
,
183901
(
2017
).
86.
I.
Mondragon-Shem
,
T. L.
Hughes
,
J.
Song
, and
E.
Prodan
, “
Topological criticality in the chiral-symmetric AIII class at strong disorder
,”
Phys. Rev. Lett.
113
,
046802
(
2014
).
87.
J.
Song
and
E.
Prodan
, “
AIII and BDI topological systems at strong disorder
,”
Phys. Rev. B
89
,
224203
(
2014
).
88.
E. J.
Meier
,
F. A.
An
,
A.
Dauphin
,
M.
Maffei
,
P.
Massignan
,
T. L.
Hughes
, and
B.
Gadway
, “
Observation of the topological Anderson insulator in disordered atomic wires
,”
Science
362
,
929
(
2018
).
89.
S.
Stützer
,
Y.
Plotnik
,
Y.
Lumer
,
P.
Titum
,
N. H.
Lindner
,
M.
Segev
,
M. C.
Rechtsman
, and
A.
Szameit
, “
Photonic topological Anderson insulators
,”
Nature
560
,
461
(
2018
).
90.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
(
1979
).
91.
S.
Longhi
,
D.
Gatti
, and
G. D.
Valle
, “
Robust light transport in non-Hermitian photonic lattices
,”
Sci. Rep.
5
,
13376
(
2015
).
92.
Z.
Zhang
,
X.
Qiao
,
B.
Midya
et al, “
Tunable topological charge vortex microlaser
,”
Science
368
,
760
(
2020
).
93.
A.
MacKinnon
and
B.
Kramer
, “
The scaling theory of electrons in disordered solids: Additional numerical results
,”
Z. Phys. B
53
(
1
),
1
(
1983
).
94.
A. M.
Llois
,
N. V.
Cohan
, and
M.
Weissmann
, “
Localization in different models for one-dimensional incommensurate systems
,”
Phys. Rev. B
29
,
3111
(
1984
).
95.
F.
Evers
and
A. D.
Mirlin
, “
Anderson transitions
,”
Rev. Mod. Phys.
80
,
1355
(
2008
).
96.
F.
Cardano
,
A.
D'Errico
,
A.
Dauphin
,
M.
Maffei
,
B.
Piccirillo
,
C.
de Lisio
,
G.
De Filippis
,
V.
Cataudella
,
E.
Santamato
,
L.
Marrucci
,
M.
Lewenstein
, and
P.
Massignan
, “
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
,”
Nat. Commun.
8
,
15516
(
2017
).
97.
M.
Maffei
,
A.
Dauphin
,
F.
Cardano
,
M.
Lewenstein
, and
P.
Massignan
, “
Topological characterization of chiral models through their long time dynamics
,”
New J. Phys.
20
,
013023
(
2018
).
98.
L.
Zhou
and
J.
Pan
, “
Non-Hermitian Floquet topological phases in the double-kicked rotor
,”
Phys. Rev. A
100
,
053608
(
2019
).
99.
T.
Liu
,
Y.-R.
Zhang
,
Q.
Ai
,
Z.
Gong
,
K.
Kawabata
,
M.
Ueda
, and
F.
Nori
, “
Second-order topological phases in non-Hermitian systems
,”
Phys. Rev. Lett.
122
,
076801
(
2019
).
100.
N.
Hatano
and
D. R.
Nelson
, “
Localization transitions in non-Hermitian quantum mechanics
,”
Phys. Rev. Lett.
77
,
570
(
1996
).
101.
A.
Carmele
,
M.
Heyl
,
C.
Kraus
, and
M.
Dalmonte
, “
Stretched exponential decay of Majorana edge modes in many-body localized Kitaev chains under dissipation
,”
Phys. Rev. B
92
,
195107
(
2015
).
102.
C.
Mejía-Cortés
and
M. I.
Molina
, “
Interplay of disorder and P T symmetry in one-dimensional optical lattices
,”
Phys. Rev. A
91
,
033815
(
2015
).
103.
Q.-B.
Zeng
,
S.
Chen
, and
R.
, “
Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss
,”
Phys. Rev. A
95
,
062118
(
2017
).
104.
E.
Levi
,
M.
Heyl
,
I.
Lesanovsky
, and
J. P.
Garrahan
, “
Robustness of many-body localization in the presence of dissipation
,”
Phys. Rev. Lett.
116
,
237203
(
2016
).
105.
R.
Hamazaki
,
K.
Kawabata
, and
M.
Ueda
, “
Non-Hermitian many-body localization
,”
Phys. Rev. Lett.
123
,
090603
(
2019
).
106.
D.-W.
Zhang
,
L.-Z.
Tang
,
L.-J.
Lang
,
H.
Yan
, and
S.-L.
Zhu
, “
Non-Hermitian topological Anderson insulators
,”
Sci. China Phys. Mech. Astron.
63
,
267062
(
2020
).
107.
A.
Yariv
and
P.
Yeh
,
Photonics: Optical Electronics in Modern Communications
(
Oxford University Press
,
Oxford
,
2007
)
108.
X.-F.
Zhou
,
X.-W.
Luo
,
S.
Wang
,
G.-C.
Guo
,
X.
Zhou
,
H.
Pu
, and
Z.-W.
Zhou
, “
Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity
,”
Phys. Rev. Lett.
118
,
083603
(
2017
).
109.
X.-W.
Luo
,
C.
Zhang
,
G.-C.
Guo
, and
Z.-W.
Zhou
, “
Topological photonic orbital-angular-momentum switch
,”
Phys. Rev. A
97
,
043841
(
2018
).
110.
Y.
Yu
,
M.
Jung
, and
G.
Shvets
, “
Zero-energy corner states in a non-Hermitian quadrupole insulator
,”
Phys. Rev. B
103
,
L041102
(
2021
).

Supplementary Material

You do not currently have access to this content.