Over the last decades, a fabulous variety of synthetic superhydrophobic surfaces have been created, offering unique anti-wetting properties. A significant focus for these surfaces has been on their stay-dry and self-cleaning properties. However, unless in a saturated environment, water droplets lose mass through evaporation and this itself is a field of significant interest, which is illustrated by a flood of recent studies on surface contamination and potential surface transmission of infection by evaporating sessile droplets during the Covid-19 pandemic. Superhydrophobic surfaces alter a droplet's contact with a substrate and the surrounding environment, thus changing pinning and heat transfer properties. The droplet shape also alters the space into which vapor can diffuse. Despite the many excellent reviews on superhydrophobic surfaces, there does not appear to have been a focus on the overlap with evaporating sessile droplets. Here, we address this gap by outlining the diffusion-limited sessile droplet evaporation theory, applications on patterned superhydrophobic surfaces, effect of evaporative cooling on drop evaporation rates, and practical applications of drop evaporation on superhydrophobic surfaces, such as nanoparticle assembly, biomedical assay, analytical chemistry, and crystallization applications. Finally, we provide our personal views of possible future directions in these overlapping areas.

1.
P.
Roach
,
N. J.
Shirtcliffe
, and
M. I.
Newton
, “
Progress in superhydrophobic surface development
,”
Soft Matter
4
,
224
240
(
2008
).
2.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
99
(
2008
).
3.
M.
Nosonovsky
and
B.
Bhushan
, “
Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering
,”
Curr. Opin. Colloid Interface Sci.
14
,
270
280
(
2009
).
4.
B.
Bhushan
and
Y. C.
Jung
, “
Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction
,”
Prog. Mater. Sci.
56
,
1
108
(
2011
).
5.
Z.-G.
Guo
and
W.-M.
Liu
, “
Sticky superhydrophobic surface
,”
Appl. Phys. Lett.
90
,
223111
(
2007
).
6.
L.
Feng
,
Y.
Zhang
,
J.
Xi
,
Y.
Zhu
,
N.
Wang
,
F.
Xia
, and
L.
Jiang
, “
Petal effect: A superhydrophobic state with high adhesive force
,”
Langmuir
24
,
4114
4119
(
2008
).
7.
C.
Neinhuis
and
W.
Barthlott
, “
Characterization and distribution of water-repellent, self-cleaning plant surfaces
,”
Ann. Bot.
79
,
667
677
(
1997
).
8.
W.
Barthlott
and
C.
Neinhuis
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Planta
202
,
1
8
(
1997
).
9.
S.
Wang
,
K.
Liu
,
X.
Yao
, and
L.
Jiang
, “
Bioinspired surfaces with superwettability: New insight on theory, design, and applications
,”
Chem. Rev.
115
,
8230
8293
(
2015
).
10.
T.
Kong
,
G.
Luo
,
Y.
Zhao
, and
Z.
Liu
, “
Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications
,”
Adv. Funct. Mater.
29
,
1808012
(
2019
).
11.
H. Y.
Erbil
, “
Practical applications of superhydrophobic materials and coatings: Problems and perspectives
,”
Langmuir
36
,
2493
2509
(
2020
).
12.
T.
Onda
,
S.
Shibuichi
,
N.
Satoh
, and
K.
Tsujii
, “
Super-water-repellent fractal surfaces
,”
Langmuir
12
,
2125
2127
(
1996
).
13.
M.
Miwa
,
A.
Nakajima
,
A.
Fujishima
,
K.
Hashimoto
, and
T.
Watanabe
, “
Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces
,”
Langmuir
16
,
5754
5760
(
2000
).
14.
H. Y.
Erbil
,
A. L.
Demirel
,
Y.
Avci
, and
O.
Mert
, “
Transformation of a simple plastic into a super-hydrophobic surface
,”
Science
299
,
1377
1380
(
2003
).
15.
A.
Tuteja
,
W.
Choi
,
M.
Ma
,
J. M.
Mabry
,
S. A.
Mazzella
,
G. C.
Rutledge
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Designing superoleophobic surfaces
,”
Science
318
,
1618
1622
(
2007
).
16.
T.
Verho
,
C.
Bower
,
P.
Andrew
,
S.
Franssila
,
O.
Ikkala
, and
R. H. A.
Ras
, “
Mechanically durable superhydrophobic surfaces
,”
Adv. Mater.
23
,
673
678
(
2011
).
17.
E.
Celia
,
T.
Darmanin
,
E. T.
de Givenchy
,
S.
Amigoni
, and
F.
Guittard
, “
Recent advances in designing superhydrophobic surfaces
,”
J. Colloid Interface Sci.
402
,
1
18
(
2013
).
18.
L.
Wen
,
Y.
Tian
, and
L.
Jiang
, “
Bioinspired super-wettability from fundamental research to practical applications
,”
Angew. Chem., Int. Ed.
54
,
3387
3399
(
2015
).
19.
J. T.
Simpson
,
S. R.
Hunter
, and
T.
Aytug
, “
Superhydrophobic materials and coatings: A review
,”
Rep. Prog. Phys.
78
,
086501
(
2015
).
20.
J.
Jeevahan
,
M.
Chandrasekaran
,
B. G.
Joseph
,
R. B.
Durairaj
, and
G.
Mageshwaran
, “
Superhydrophobic surfaces: A review on fundamentals, applications, and challenges
,”
J. Coat. Technol. Res.
15
,
231
250
(
2018
).
21.
D.
Wang
,
Q.
Sun
,
M.
Hokkanen
,
C.
Zhang
,
F.-Y.
Lin
,
Q.
Liu
,
S.-P.
Zhu
,
T.
Zhou
,
Q.
Chang
,
B.
He
,
Q.
Zhou
,
L.
Chen
,
Z.
Wang
,
R. H. A.
Ras
, and
X.
Deng
, “
Design of robust superhydrophobic surfaces
,”
Nature
582
(
7810
),
55
59
(
2020
).
22.
H.
Teisala
and
H.-J.
Butt
, “
Hierarchical structures for superhydrophobic and superoleophobic surfaces
,”
Langmuir
35
,
10689
10703
(
2019
).
23.
T.
Darmanin
and
F.
Guittard
, “
Recent advances in the potential applications of bioinspired superhydrophobic materials
,”
J. Mater. Chem A.
2
,
16319
16359
(
2014
).
24.
E. J.
Falde
,
S. T.
Yohe
,
Y. L.
Colson
, and
M. W.
Grinstaff
, “
Superhydrophobic materials for biomedical applications
,”
Biomaterials
104
,
87
103
(
2016
).
25.
S.
Zhang
,
X.
Ouyang
,
J.
Li
,
S.
Gao
,
S.
Han
,
L.
Liu
, and
H.
Wei
, “
Underwater drag-reducing effect of superhydrophobic submarine model
,”
Langmuir
31
,
587
593
(
2015
).
26.
J.
Genzer
and
K.
Efimenko
, “
Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review
,”
Biofouling
22
,
339
360
(
2006
).
27.
G.
McHale
,
D. L.
Herbertson
,
S. J.
Elliott
,
N. J.
Shirtcliffe
, and
M. I.
Newton
, “
Electrowetting of nonwetting liquids and liquid marbles
,”
Langmuir
23
,
918
924
(
2007
).
28.
H. Y.
Erbil
, “
Evaporation of pure liquid sessile and spherical suspended drops: A review
,”
Adv. Colloid Interface Sci.
170
,
67
86
(
2012
).
29.
A. M.
Cazabat
and
G.
Guéna
, “
Evaporation of macroscopic sessile droplets
,”
Soft Matter
6
,
2591
2612
(
2010
).
30.
J. M.
Stauber
,
S. K.
Wilson
,
B. R.
Duffy
, and
K.
Sefiane
, “
On the lifetimes of evaporating droplets
,”
J. Fluid Mech.
744
,
R2
(
2014
).
31.
R. G.
Larson
, “
Transport and deposition patterns in drying sessile droplets
,”
AIChE J.
60
,
1538
1571
(
2014
).
32.
D.
Brutin
and
V.
Starov
, “
Recent advances in droplet wetting and evaporation
,”
Chem. Soc. Rev.
47
,
558
585
(
2018
).
33.
D.
Zang
,
S.
Tarafdar
,
Y. Y.
Tarasevich
,
M. D.
Choudhury
, and
T.
Dutta
, “
Evaporation of a droplet: From physics to applications
,”
Phys. Rep.
804
,
1
56
(
2019
).
34.
S. K.
Wilson
and
H.-M.
D'Ambrosio
, “
Evaporation of sessile droplets
,”
Annu. Rev. Fluid Mech.
55
,
481
509
(
2023
).
35.
J. C.
Maxwell
,
Collected Scientific Papers
(
Cambridge University Press
,
1890
), Vol.
2
, p.
625
.
36.
I.
Langmuir
, “
The evaporation of small spheres
,”
Phys. Rev.
12
,
368
370
(
1918
).
37.
R. G.
Picknett
and
R. J.
Bexon
, “
The evaporation of sessile or pendant drops in still air
,”
J. Colloid Interface Sci.
61
,
336
350
(
1977
).
38.
K. S.
Birdi
,
D. T.
Vu
, and
A.
Winter
, “
A study of the evaporation rates of small water drops placed on a solid surface
,”
J. Phys. Chem.
93
,
3702
3703
(
1989
).
39.
S. M.
Rowan
,
M. I.
Newton
, and
G.
McHale
, “
Evaporation of microdroplets and the wetting of solid surfaces
,”
J. Phys. Chem.
99
,
13268
13271
(
1995
).
40.
G.
McHale
,
S. M.
Rowan
,
M. I.
Newton
, and
M. K.
Banerjee
, “
Evaporation and the wetting of a low-energy solid surface
,”
J. Phys. Chem. B
102
,
1964
1967
(
1998
).
41.
H. Y.
Erbil
,
G.
McHale
,
S. M.
Rowan
, and
M. I.
Newton
, “
Determination of receding contact angle of sessile drops on polymer surfaces by evaporation
,”
Langmuir
15
,
7378
7385
(
1999
).
42.
C.
Bourges-Monnier
and
M. E. R.
Shanahan
, “
Influence of evaporation on contact angle
,”
Langmuir
11
,
2820
2829
(
1995
).
43.
H. Y.
Erbil
,
G.
McHale
, and
M. I.
Newton
, “
Drop evaporation on solid surfaces: Constant contact angle mode
,”
Langmuir
18
,
2636
2641
(
2002
).
44.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
1344
(
2002
).
45.
H.
Hu
and
R. G.
Larson
, “
Analysis of the microfluid flow in an evaporating sessile droplet
,”
Langmuir
21
,
3963
3971
(
2005
).
46.
Y. O.
Popov
, “
Evaporative deposition patterns: Spatial dimensions of the deposit
,”
Phys. Rev. E
71
(
3
),
036313
(
2005
).
47.
T. A.
Nguyen
,
A. V.
Nguyen
,
M. A.
Hampton
,
Z. P.
Xu
,
L.
Huang
, and
V.
Rudolph
, “
Theoretical and experimental analysis of droplet evaporation on solid surfaces
,”
Chem. Eng. Sci.
69
,
522
529
(
2012
).
48.
T. A.
Nguyen
and
A. V.
Nguyen
, “
Transient volume of evaporating sessile droplets: 2/3, 1/1, or another power law?
,”
Langmuir
30
,
6544
6547
(
2014
).
49.
T. A.
Nguyen
,
S. R.
Biggs
, and
A. V.
Nguyen
, “
Analytical model for diffusive evaporation of sessile droplets coupled with ınterfacial cooling effect
,”
Langmuir
34
,
6955
6962
(
2018
).
50.
Y.
Shen
,
F.
Kang
,
Y.
Cheng
,
K.
Zhang
, and
Y.
Sui
, “
Numerical and theoretical analysis of fast evaporating sessile droplets with coupled fields
,”
Int. J. Therm. Sci.
172
,
107284
(
2022
).
51.
A. J.
Jenkins
,
G. G.
Wells
,
R.
Ledesma-Aguilar
,
D.
Orejon
,
S.
Armstrong
, and
G.
McHale
, “
Suppression of crystallisation in saline drop evaporation on pinning-free surfaces
,”
J. Chem. Phys.
158
,
124708
(
2023
).
52.
G.
McHale
,
S.
Aqil
,
N. J.
Shirtcliffe
,
M. I.
Newton
, and
H. Y.
Erbil
, “
Analysis of droplet evaporation on a superhydrophobic surface
,”
Langmuir
21
,
11053
11060
(
2005
).
53.
X.
Zhang
,
S.
Tan
,
N.
Zhao
,
X.
Guo
,
X.
Zhang
,
Y.
Zhang
, and
J.
Xu
, “
Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces
,”
ChemPhysChem
7
,
2067
2070
(
2006
).
54.
H. Y.
Erbil
and
R. A.
Meric
, “
Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry
,”
J. Phys. Chem. B
101
,
6867
6873
(
1997
).
55.
S.
Tan
,
X.
Zhang
,
N.
Zhao
, and
J.
Xu
, “
Simulation of sessile water-droplet evaporation on superhydrophobic polymer surfaces
,”
Chin. J. Chem. Phys.
20
,
140
144
(
2007
).
56.
S. A.
Kulinich
and
M.
Farzaneh
, “
Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces
,”
Appl. Surf. Sci.
255
,
4056
4060
(
2009
).
57.
A.
Anantharaju
,
M.
Panchagnula
, and
S.
Neti
, “
Evaporating drops on patterned surfaces: Transition from pinned to moving triple line
,”
J. Colloid Interface Sci.
337
,
176
182
(
2009
).
58.
D. H.
Shin
,
S. H.
Lee
,
C. K.
Choi
, and
S.
Retterer
, “
The evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces
,”
J. Micromech. Microeng.
20
,
055021
(
2010
).
59.
M.
Dandan
and
H. Y.
Erbil
, “
Evaporation rate of graphite liquid marbles: Comparison with water droplets
,”
Langmuir
25
,
8362
8367
(
2009
).
60.
A.
Tosun
and
H. Y.
Erbil
, “
Evaporation rate of PTFE liquid marbles
,”
Appl. Surf. Sci.
256
,
1278
1283
(
2009
).
61.
H.
Gelderblom
,
A. G.
Marín
,
H.
Nair
,
A.
van Houselt
,
L.
Lefferts
,
J. H.
Snoeijer
, and
D.
Lohse
, “
How water droplets evaporate on a superhydrophobic substrate
,”
Phys. Rev. E
83
,
026306
(
2011
).
62.
B.
Sobac
and
D.
Brutin
, “
Triple-line behavior and wettability controlled by nanocoated substrates: Influence on sessile drop evaporation
,”
Langmuir
27
,
14999
15007
(
2011
).
63.
S.
Dash
and
S. V.
Garimella
, “
Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis
,”
Langmuir
29
,
10785
10795
(
2013
).
64.
Y. C.
Chuang
,
C. K.
Chu
,
S. Y.
Lin
, and
L. J.
Chen
, “
Evaporation of water droplets on soft patterned surfaces
,”
Soft Matter
10
,
3394
3403
(
2014
).
65.
J. M.
Stauber
,
S. K.
Wilson
,
B. R.
Duffy
, and
K.
Sefiane
, “
Evaporation of droplets on strongly hydrophobic substrates
,”
Langmuir
31
,
3653
3660
(
2015
).
66.
S.
Ramos
,
J. F.
Dias
, and
B.
Canut
, “
Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics
,”
J. Colloid Interface Sci.
440
,
133
139
(
2015
).
67.
M.
Lee
,
W.
Kim
,
S.
Lee
,
S.
Baek
,
K.
Yong
, and
S.
Jeon
, “
Water droplet evaporation from sticky superhydrophobic surfaces
,”
Appl. Phys. Lett.
111
,
021603
(
2017
).
68.
A.
Paul
,
G.
Khurana
, and
P.
Dhar
, “
Substrate concavity ınfluenced evaporation mechanisms of sessile droplets
,”
Phys. Fluids
33
,
082003
(
2021
).
69.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
M.
Erlich
, “
Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
,”
Langmuir
23
,
6501
6503
(
2007
).
70.
D.
Bartolo
,
F.
Bouamrirene
,
É.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on micropatterned surfaces
,”
Europhys. Lett.
74
,
299
305
(
2006
).
71.
H. M.
Kwon
,
A. T.
Paxson
,
K. K.
Varanasi
, and
N. A.
Patankar
, “
Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces
,”
Phys. Rev. Lett.
106
,
036102
(
2011
).
72.
G.
Manukyan
,
J. M.
Oh
,
D.
van den Ende
,
R. G. H.
Lammertink
, and
F.
Mugele
, “
Electrical switching of wetting states on superhydrophobic surfaces: A route towards reversible Cassie-to-Wenzel transitions
,”
Phys. Rev. Lett.
106
,
014501
(
2011
).
73.
P.
Papadopoulos
,
L.
Mammen
,
X.
Deng
,
D.
Volmer
, and
H. J.
Butt
, “
How superhydrophobicity breaks down
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
3254
3258
(
2013
).
74.
S.
Moulinet
and
D.
Bartolo
, “
Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces
,”
Eur. Phys. J. E
24
,
251
260
(
2007
).
75.
M.
Reyssat
,
J. M.
Yeomans
, and
D.
Quéré
, “
Impalement of fakir drops
,”
Europhys. Lett.
81
,
26006
(
2008
).
76.
Y. C.
Jung
and
B.
Bhushan
, “
Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces
,”
J. Microsc.
229
,
127
140
(
2008
).
77.
C. H.
Choi
and
C. J.
Kim
, “
Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights
,”
Langmuir
25
,
7561
7567
(
2009
).
78.
P.
Tsai
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures
,”
Phys. Rev. Lett.
104
,
116102
(
2010
).
79.
M.
Gross
,
F.
Varnik
,
D.
Raabe
, and
I.
Steinbach
, “
Small droplets on superhydrophobic substrates
,”
Phys. Rev. E
81
,
051606
(
2010
).
80.
X.
Chen
,
R.
Ma
,
J.
Li
,
C.
Hao
,
W.
Guo
,
B. L.
Luk
,
S. C.
Li
,
S.
Yao
, and
Z.
Wang
, “
Evaporation of droplets on superhydrophobic surfaces: Surface roughness and small droplet size effects
,”
Phys. Rev. Lett.
109
,
116101
(
2012
).
81.
U.
Tuvshindorj
,
A.
Yildirim
,
F. E.
Ozturk
, and
M.
Bayindir
, “
Robust Cassie state of wetting in transparent superhydrophobic coatings
,”
ACS Appl. Mater. Interfaces
6
,
9680
9688
(
2014
).
82.
A.
Bussonnière
,
M. B.
Bigdeli
,
D. Y.
Chueh
,
Q.
Liu
,
P.
Chen
, and
P. A.
Tsai
, “
Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures
,”
Soft Matter
13
,
978
984
(
2017
).
83.
R.
Chen
,
L.
Jiao
,
X.
Zhu
,
Q.
Liao
,
D.
Ye
,
B.
Zhang
,
W.
Li
,
Y.
Lei
, and
D.
Li
, “
Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light ınduced evaporation
,”
Appl. Therm. Eng.
144
,
945
959
(
2018
).
84.
A.
Aldhaleai
,
F.
Khan
,
T.
Thundat
, and
P. A.
Tsai
, “
Evaporation dynamics of water droplets on superhydrophobic nanograss surfaces
,”
Int. J. Heat Mass Transfer
160
,
120149
(
2020
).
85.
S.
David
,
K.
Sefiane
, and
L.
Tadrist
, “
Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops
,”
Colloids Surf., A
298
,
108
114
(
2007
).
86.
G. J.
Dunn
,
S. K.
Wilson
,
B. R.
Duy
,
S.
David
, and
K.
Sefiane
, “
The strong influence of substrate conductivity on droplet evaporation
,”
J. Fluid Mech.
623
,
329
351
(
2009
).
87.
B.
Sobac
and
D.
Brutin
, “
Thermal effects of the substrate on water droplet evaporation
,”
Phys. Rev. E
86
,
021602
(
2012
).
88.
Z.
Pan
,
S.
Dash
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates
,”
Langmuir
29
,
15831
15841
(
2013
).
89.
S.
Dash
and
S. V.
Garimella
, “
Droplet evaporation on heated hydrophobic and superhydrophobic surfaces
,”
Phys. Rev. E
89
,
042402
(
2014
).
90.
A.
Chandramohan
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate
,”
Appl. Phys. Lett.
110
,
041605
(
2017
).
91.
M. J.
Gibbons
,
P.
Di Marco
, and
A. J.
Robinson
, “
Local heat transfer to an evaporating superhydrophobic droplet
,”
Int. J. Heat Mass Transfer
121
,
641
652
(
2018
).
92.
M. H.
Mousa
,
A. A.
Günay
,
D.
Orejon
,
S.
Khodakarami
,
K.
Nawaz
, and
N.
Miljkovic
, “
Gas-phase temperature mapping of evaporating microdroplets
,”
ACS Appl. Mater. Interfaces
13
,
15925
15938
(
2021
).
93.
V.
Rastogi
,
S.
Melle
,
O. G.
Calderon
,
A. A.
Garcia
,
M.
Marquez
, and
O. D.
Velev
, “
Synthesis of light-diffracting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface
,”
Adv. Mater.
20
,
4263
4268
(
2008
).
94.
Á. G.
Marín
,
H.
Gelderblom
,
A.
Susarrey-Arce
,
A.
van Houselt
,
L.
Lefferts
,
J. G. E.
Gardeniers
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Building microscopic soccer balls with evaporating colloidal fakir drops
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16455
16458
(
2012
).
95.
J.
Zhou
,
J.
Yang
,
Z.
Gu
,
G.
Zhang
,
Y.
Wei
,
X.
Yao
,
Y.
Song
, and
L.
Jiang
, “
Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates
,”
ACS Appl. Mater. Interfaces
7
,
22644
22651
(
2015
).
96.
S.
Wooh
,
H.
Huesmann
,
M. N.
Tahir
,
M.
Paven
,
K.
Wichmann
,
D.
Vollmer
,
W.
Tremel
,
P.
Papadopoulosa
, and
H.-J.
Butt
, “
Synthesis of mesoporous supraparticles on superamphiphobic surfaces
,”
Adv. Mater.
27
,
7338
7343
(
2015
).
97.
M.
Sperling
and
M.
Gradzielski
, “
Droplets, evaporation and a superhydrophobic surface: Simple tools for guiding colloidal particles into complex materials
,”
Gels
3
,
15
(
2017
).
98.
C.
Seyfert
,
E. J. W.
Berenschot
,
N. R.
Tas
,
A.
Susarrey-Arce
, and
A.
Marin
, “
Evaporation-driven colloidal cluster assembly using droplets on superhydrophobic fractal-like structures
,”
Soft Matter
17
,
506
515
(
2021
).
99.
J.
McLane
,
C.
Wu
, and
M.
Khine
, “
Enhanced detection of protein in urine by droplet evaporation on a superhydrophobic plastic
,”
Adv. Mater. Interfaces
2
,
1400034
(
2015
).
100.
F.
Gentile
,
M. L.
Coluccio
,
N.
Coppedè
,
F.
Mecarini
,
G.
Das
,
C.
Liberale
,
L.
Tirinato
,
M.
Leoncini
,
G.
Perozziello
,
P.
Candeloro
,
F.
De Angelis
, and
E.
Di Fabrizio
, “
Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions
,”
ACS Appl. Mater. Interfaces
4
,
3213
3224
(
2012
).
101.
Y. C.
Kao
,
X.
Han
,
Y. H.
Lee
,
H. K.
Lee
,
G. C.
Phan-Quang
,
C. L.
Lay
,
H. Y. F.
Sim
,
V. J. X.
Phua
,
L. S.
Ng
,
C. W.
Ku
,
T. C.
Tan
,
I. Y.
Phang
,
N. S.
Tan
, and
X. Y.
Ling
, “
Multiplex surface-enhanced raman scattering ıdentification and quantification of urine metabolites in patient samples within 30 min
,”
ACS Nano
14
,
2542
2552
(
2020
).
102.
R.
Bhardwaj
and
A.
Agrawal
, “
Tailoring surface wettability to reduce chances of infection of COVID-19 by a respiratory droplet and to improve the effectiveness of personal protection equipment
,”
Phys. Fluids
32
(
8
),
081702
(
2020
).
103.
C.
Seyfert
,
J.
Rodríguez-Rodríguez
,
D.
Lohse
, and
A.
Marin
, “
Stability of respiratory-like droplets under evaporation
,”
Phys. Rev. Fluids
7
,
023603
(
2022
).
104.
R.
Hernandez-Perez
,
Z. H.
Fan
, and
J. L.
Garcia-Cordero
, “
Evaporation-driven bioassays in suspended droplets
,”
Anal. Chem.
88
,
7312
7317
(
2016
).
105.
Y.
Wang
,
F.
Liu
,
Y.
Yang
, and
L.-P.
Xu
, “
Droplet evaporation-ınduced analyte concentration toward sensitive biosensing
,”
Mater. Chem. Front.
5
,
5639
5652
(
2021
).
106.
F.
De Angelis
,
F.
Gentile
,
F.
Mecarini
,
G.
Das
,
M.
Moretti
,
P.
Candeloro
,
M. L.
Coluccio
,
G.
Cojoc
,
A.
Accardo
,
C.
Liberale
,
R. P.
Zaccaria
,
G.
Perozziello
,
L.
Tirinato
,
A.
Toma
,
G.
Cuda
,
R.
Cingolani
, and
E.
Di Fabrizio
, “
Breaking the diffusion limit with superhydrophobic delivery of molecules to plasmonic nanofocusing SERS structures
,”
Nat. Photonics
5
,
682
687
(
2011
).
107.
S. Y.
Chou
,
C. C.
Yu
,
Y. T.
Yen
,
K. T.
Lin
,
H. L.
Chen
, and
W. F.
Su
, “
Romantic story or raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced raman scattering
,”
Anal. Chem.
87
,
6017
6024
(
2015
).
108.
X.
Hu
,
R.
Pan
,
M.
Cai
,
W.
Liu
,
X.
Luo
,
C.
Chen
,
G.
Jiang
, and
M.
Zhong
, “
Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
,”
Adv. Opt. Technol.
9
,
89
100
(
2020
).
109.
V.
Fabre
,
F.
Carcenac
,
A.
Laborde
,
J.-B.
Doucet
,
C.
Vieu
,
P.
Louarn
, and
E.
Trevisiol
, “
Hierarchical superhydrophobic device to concentrate and precisely localize water-soluble analytes: A route to environmental analysis
,”
Langmuir
38
,
14249
14260
(
2022
).
110.
J.
Kind
and
C. M.
Thiele
, “
MRI and localised NMR spectroscopy of sessile droplets on hydrophilic, hydrophobic and superhydrophobic surfaces—Examination of the chemical composition during evaporation
,”
J. Magn. Reson.
307
,
106579
(
2019
).
111.
A.
Accardo
,
M.
Burghammer
,
E.
Cola
,
M.
Reynolds
,
E.
Fabrizio
, and
C.
Riekel
, “
Calcium carbonate mineralization: X-ray microdiffraction probing of the ınterface of an evaporating drop on a superhydrophobic surface
,”
Langmuir
27
,
8216
8222
(
2011
).
112.
S. A.
McBride
,
S.
Dash
, and
K. K.
Varanasi
, “
Evaporative crystallization in drops on superhydrophobic and liquid-ımpregnated surfaces
,”
Langmuir
34
,
12350
12358
(
2018
).
113.
O.
Carrier
,
N.
Shahidzadeh-Bonn
,
R.
Zargar
,
M.
Aytouna
,
M.
Habibi
,
J.
Eggers
, and
D.
Bonn
, “
Evaporation of water: Evaporation rate and collective effects
,”
J. Fluid Mech.
798
,
774
786
(
2016
).
114.
S.
Moradi Mehr
,
L.
Businaro
,
M.
Habibi
, and
A. R.
Moradi
, “
Collective behavior of evaporating droplets on superhydrophobic surfaces
,”
AIChE J.
66
,
e16284
(
2020
).
115.
Z.
Wang
,
D.
Orejon
,
Y.
Takata
, and
K.
Sefiane
, “
Wetting and evaporation of multicomponent droplets
,”
Phys. Rep.
960
,
1
37
(
2022
).
116.
K. M.
Al Balushi
,
G.
Duursma
,
P.
Valluri
,
K.
Sefiane
, and
D.
Orejon
, “
Binary mixture droplet evaporation on microstructured decorated surfaces and the mixed stick–slip modes
,”
Langmuir
39
,
8323
8338
(
2023
).
117.
H.
Tan
,
C.
Diddens
,
M.
Versluis
,
H.-J.
Butt
,
D.
Lohse
, and
X.
Zhang
, “
Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface
,”
Soft Matter
13
,
2749
2759
(
2017
).
118.
Y.
Shao
,
W.
Du
,
Y.
Fan
,
J.
Zhao
,
Z.
Zhang
, and
L.
Ren
, “
Near-ınfrared light accurately controllable superhydrophobic surface from water sticking to repelling
,”
Chem. Eng. J.
427
,
131718
(
2022
).
119.
Y.
Li
,
D.
Quéré
,
C.
Lv
, and
Q.
Zheng
, “
Monostable superrepellent materials
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3387
3392
(
2017
).
120.
T.-S.
Wong
,
S.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
(
7365
),
443
447
(
2011
).
121.
A.
Lafuma
and
D.
Quéré
, “
Slippery pre-suffused surfaces
,”
Europhys. Lett.
96
,
56001
(
2011
).
122.
L.
Wang
and
T. J.
McCarthy
, “
Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency
,”
Angew. Chem., Int. Ed.
55
,
244
248
(
2016
).
123.
L.
Chen
,
S.
Huang
,
R. H. A.
Ras
, and
X.
Tian
, “
Omniphobic liquid-like surfaces
,”
Nat. Rev. Chem.
7
,
123
137
(
2023
).
124.
I. J.
Gresham
and
C.
Neto
, “
Advances and challenges in slippery covalently-attached liquid surfaces
,”
Adv. Colloid Interface Sci.
315
,
102906
(
2023
).
125.
G.
Launay
,
M. S.
Sadullah
,
G.
McHale
,
R.
Ledesma‐Aguilar
,
H.
Kusumaatmaja
, and
G. G.
Wells
, “
Self-propelled droplet transport on shaped-liquid surfaces
,”
Sci. Rep.
10
,
14987
(
2020
).
126.
T.
Mouterde
,
P.
Lecointre
,
G.
Lehoucq
,
A.
Checco
,
C.
Clanet
, and
D.
Quéré
, “
Two recipes for repelling hot water
,”
Nat. Commun.
10
,
1410
(
2019
).
127.
D.
Mampallil
and
H. B.
Eral
, “
A review on suppression and utilization of the coffee-ring effect
,”
Adv. Colloid Interface Sci.
252
,
38
54
(
2018
).
128.
D. J.
Fairhurst
, “
Predicting evaporation rates of droplet arrays
,”
J. Fluid Mech.
934
,
F1
(
2022
).

Supplementary Material

You do not currently have access to this content.