Acoustic energy harvesters (AEHs) open up opportunities to recycle noise waste and generate electricity. They provide potential power solutions to a wide range of sensors. However, the practicality of AEHs has long been limited by their narrow bandwidths and low efficiencies. In this study, we present an ultra-broadband AEH and a highly efficient AEH that transforms sound energy into usable electrical power. Our broadband device comprises an electrodynamic loudspeaker driver and an optimized acoustic metamaterial matching layer and is capable of converting 7.6% to 15.1% of total incident sound energy from 50 to 228 Hz. Moreover, we demonstrate that by replacing the loudspeaker surround with a lower-loss material such as PDMS, the energy conversion rate can be significantly increased to 67%. The proposed broadband AEH has a fractional bandwidth eight times the state-of-the-art, while the proposed highly efficient AEH has a peak efficiency three times the state-of-the-art. The outstanding performance makes our designs cost-effective and scalable solutions for noise reduction and power generation.

1.
A. T.
Patil
and
M. B.
Mandale
,
Noise Vib. Worldwide
52
,
397
(
2021
).
2.
Z.
Wen
,
W.
Wang
,
A.
Khelif
,
B.
Djafari-Rouhani
, and
Y.
Jin
,
Appl. Phys. Lett.
120
,
020501
(
2022
).
3.
S. K.
Karan
,
S.
Maiti
,
J. H.
Lee
,
Y. K.
Mishra
,
B. B.
Khatua
, and
J. K.
Kim
,
Adv. Funct. Mater.
30
,
2004446
(
2020
).
4.
G.
Hu
,
L.
Tang
,
J.
Liang
,
C.
Lan
, and
R.
Das
,
Smart Mater. Struct.
30
,
085025
(
2021
).
5.
C.
Song
,
J.
Zhao
,
X.
Ma
,
M.
Zhang
,
W.
Yuan
,
F.
Yang
,
Z.
Wang
,
X.
Zhang
, and
Y.
Pan
,
AIP Adv.
11
,
115002
(
2021
).
6.
X.
Peng
,
Y.
Wen
,
P.
Li
,
A.
Yang
, and
X.
Bai
,
Appl. Phys. Lett.
103
,
164106
(
2013
).
7.
C.
Song
, et al., “Broadband sound absorption and energy harvesting by a graded array of helmholtz resonators,” in
IEEE Transactions on Dielectrics and Electrical Insulation
(
IEEE
,
2022
), Vol. 29, pp.
777
783
.
8.
N. M.
Monroe
and
J. H.
Lang
,
Smart Mater. Struct.
28
,
055032
(
2019
).
9.
A.
Yang
,
P.
Li
,
Y.
Wen
,
C.
Lu
,
X.
Peng
,
W.
He
,
J.
Zhang
,
D.
Wang
, and
F.
Yang
,
Rev. Sci. Instrum.
85
,
066103
(
2014
).
10.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
,
Nat. Mater.
13
,
873
(
2014
).
11.
F.
Khan
and
I.
Haq
,
Sadhana
41
,
397
405
(
2016
).
12.
F. U.
KhanIzhar
,
Rev. Sci. Instrum.
87
,
025003
(
2016
).
13.
Z.
Li
,
D.-Q.
Yang
,
S.-L.
Liu
,
S.-Y.
Yu
,
M.-H.
Lu
,
J.
Zhu
,
S.-T.
Zhang
,
M.-W.
Zhu
,
X.-S.
Guo
,
H.-D.
Wu
et al,
Sci. Rep.
7
,
42863
(
2017
).
14.
N.
Cui
,
X.
Jia
,
A.
Lin
,
J.
Liu
,
S.
Bai
,
L.
Zhang
,
Y.
Qin
,
R.
Yang
,
F.
Zhou
, and
Y.
Li
,
Nanoscale Adv.
1
,
4909
(
2019
).
15.
L. L.
Beranek
and
T.
Mellow
,
Acoustics: Sound Fields and Transducers
(
Academic Press
,
2012
).
16.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
John Wiley & Sons
,
2000
).
17.
See https://www.comsol.com/model/lumped-loudspeaker-driver-12295 for “Lumped loudspeaker driver,” (Last accessed 11 August 2023).
18.
J.
Choi
,
I.
Jung
, and
C.-Y.
Kang
,
Nano energy
56
,
169
(
2019
).
19.
M.
Yuan
,
Z.
Cao
,
J.
Luo
, and
X.
Chou
,
Micromachines
10
,
48
(
2019
).
20.
Z.
Chen
,
B.
Guo
,
Y.
Yang
, and
C.
Cheng
,
Phys. B: Condens. Matter
438
,
1
(
2014
).
21.
G.-S.
Liu
,
Y.-Y.
Peng
,
M.-H.
Liu
,
X.-Y.
Zou
, and
J.-C.
Cheng
,
Appl. Phys. Lett.
113
,
153503
(
2018
).
22.
Q.
Zhang
,
Z.
Xi
,
Y.
Wang
,
L.
Liu
,
H.
Yu
,
H.
Wang
, and
M.
Xu
, “Multi-tube helmholtz resonator based triboelectric nanogenerator for broadband acoustic energy harvesting,”
Front. Mater.
9
,
896953
(2022).
23.
H.
Zhao
,
X.
Xiao
,
P.
Xu
,
T.
Zhao
,
L.
Song
,
X.
Pan
,
J.
Mi
,
M.
Xu
, and
Z. L.
Wang
,
Adv. Energy Mater.
9
,
1902824
(
2019
).
24.
Y.
Ding
,
E. C.
Statharas
,
K.
Yao
, and
M.
Hong
,
Appl. Phys. Lett.
110
,
241903
(
2017
).
25.
L.
Davis
, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, NY, 1991).

Supplementary Material

You do not currently have access to this content.