Spin–orbit coupling and breaking of inversion symmetry are necessary ingredients to enable a pure spin current-based manipulation of the magnetization via the spin–orbit torque effect. Currently, magnetic insulator oxides with non-dissipative characteristics are being explored. When combined with non-magnetic heavy metals, known for their large spin–orbit coupling, they offer promising potential for energy-efficient spin-orbitronics applications. The intrinsic electronic correlations characterizing those strongly correlated oxides hold the promises to add extra control-knobs to the desired efficient spin-wave propagation and abrupt magnetization switching phenomena. Spinel vanadate FeV2O4 (FVO) exhibits several structural phase transitions, which are accompanied by an intricate interplay of magnetic, charge, and orbital orderings. When grown as a thin film onto SrTiO3, the compressive strain state induces a perpendicular magnetic anisotropy, making FVO-based heterostructures desirable for spin-orbitronics applications. In this study, we have optimized the deposition of stoichiometric and epitaxial Pt/FVO heterostructures by pulsed laser deposition and examined their spin-related phenomena. From angle-dependent magnetotransport measurements, we observed both anisotropic magnetoresistance and spin Hall magnetoresistance (SMR) effects. Our findings show the SMR component as the primary contributor to the overall magnetoresistance, whose high value of 0.12% is only comparable to properly optimized oxide-based systems.

1.
Ł.
Karwacki
,
K.
Grochot
,
S.
Łazarski
,
W.
Skowroński
,
J.
Kanak
,
W.
Powroźnik
,
J.
Barnaś
,
F.
Stobiecki
, and
T.
Stobiecki
, “
Optimization of spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers
,”
Sci. Rep.
10
(
1
),
10767
(
2020
).
2.
J. M.
Gomez-Perez
,
X.-P.
Zhang
,
F.
Calavalle
,
M.
Ilyn
,
C.
González-Orellana
,
M.
Gobbi
,
C.
Rogero
,
A.
Chuvilin
,
V. N.
Golovach
,
L. E.
Hueso
,
F. S.
Bergeret
, and
F.
Casanova
, “
Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin Hall magnetoresistance
,”
Nano Lett.
20
(
9
),
6815
6823
(
2020
).
3.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T. B.
Goennenwein
,
E.
Saitoh
, and
G. E. W.
Bauer
, “
Theory of spin Hall magnetoresistance
,”
Phys. Rev. B
87
(
14
),
144411
(
2013
).
4.
N.
Jiang
,
B.
Yang
,
Y.
Bai
,
Y.
Jiang
, and
S.
Zhao
, “
The sign reversal of anomalous Hall effect derived from the transformation of scattering effect in cluster-assembled Ni0.8Fe0.2 nanostructural films
,”
Nanoscale
13
(
27
),
11817
11826
(
2021
).
5.
K.
Tang
,
Z.
Wen
,
Y.-C.
Lau
,
H.
Sukegawa
,
T.
Seki
, and
S.
Mitani
, “
Magnetization switching induced by spin–orbit torque from Co2 MnGa magnetic Weyl semimetal thin films
,”
Appl. Phys. Lett.
118
(
6
),
062402
(
2021
).
6.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
(
4
),
1213
1260
(
2015
).
7.
A.
Ghosh
,
K.
Garello
,
C. O.
Avci
,
M.
Gabureac
, and
P.
Gambardella
, “
Interface-enhanced spin-orbit torques and current-induced magnetization switching of Pd/Co/AlOx layers
,”
Phys. Rev. Appl.
7
(
1
),
014004
(
2017
).
8.
H.
Nakayama
,
M.
Althammer
,
Y.-T.
Chen
,
K.
Uchida
,
Y.
Kajiwara
,
D.
Kikuchi
,
T.
Ohtani
,
S.
Geprägs
,
M.
Opel
,
S.
Takahashi
,
R.
Gross
,
G. E. W.
Bauer
,
S. T. B.
Goennenwein
, and
E.
Saitoh
, “
Spin Hall magnetoresistance induced by a nonequilibrium proximity effect
,”
Phys. Rev. Lett.
110
(
20
),
206601
(
2013
).
9.
S.
Ding
,
Z.
Liang
,
C.
Yun
,
R.
Wu
,
M.
Xue
,
Z.
Lin
,
A.
Ross
,
S.
Becker
,
W.
Yang
,
X.
Ma
,
D.
Chen
,
K.
Sun
,
G.
Jakob
,
M.
Kläui
, and
J.
Yang
, “
Anomalous Hall effect in magnetic insulator heterostructures: Contributions from spin-Hall and magnetic-proximity effects
,”
Phys. Rev. B
104
(
22
),
224410
(
2021
).
10.
M.
Isasa
,
A.
Bedoya-Pinto
,
S.
Vélez
,
F.
Golmar
,
F.
Sánchez
,
L. E.
Hueso
,
J.
Fontcuberta
, and
F.
Casanova
, “
Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects
,”
Appl. Phys. Lett.
105
(
14
),
142402
(
2014
).
11.
M.
Althammer
,
A. V.
Singh
,
T.
Wimmer
,
Z.
Galazka
,
H.
Huebl
,
M.
Opel
,
R.
Gross
, and
A.
Gupta
, “
Role of interface quality for the spin Hall magnetoresistance in nickel ferrite thin films with bulk-like magnetic properties
,”
Appl. Phys. Lett.
115
(
9
),
092403
(
2019
).
12.
A.
Anadón
,
R.
Ramos
,
I.
Lucas
,
P. A.
Algarabel
,
L.
Morellón
,
M. R.
Ibarra
, and
M. H.
Aguirre
, “
Characteristic length scale of the magnon accumulation in Fe3O4/Pt bilayer structures by incoherent thermal excitation
,”
Appl. Phys. Lett.
109
(
1
),
012404
(
2016
).
13.
R.
Gao
,
C.
Fu
,
W.
Cai
,
G.
Chen
,
X.
Deng
,
H.
Zhang
,
J.
Sun
, and
B.
Shen
, “
Electric control of the Hall effect in Pt/Bi0.9La0.1FeO3 bilayers
,”
Sci. Rep.
6
(
1
),
20330
(
2016
).
14.
S.
Homkar
,
E.
Martin
,
B.
Meunier
,
A.
Anadon-Barcelona
,
C.
Bouillet
,
J.
Gorchon
,
K.
Dumesnil
,
C.
Lefèvre
,
F.
Roulland
,
O.
Copie
,
D.
Preziosi
,
S.
Petit-Watelot
,
J.-C.
Rojas-Sánchez
, and
N.
Viart
, “
Spin current transport in hybrid Pt/multifunctional magnetoelectric Ga0.6Fe1.4O3 bilayers
,”
ACS Appl. Electron. Mater.
3
(
10
),
4433
4440
(
2021
).
15.
A.
Anadón
,
E.
Martin
,
S.
Homkar
,
B.
Meunier
,
M.
Vergés
,
H.
Damas
,
J.
Alegre
,
C.
Lefevre
,
F.
Roulland
,
C.
Dubs
,
M.
Lindner
,
L.
Pasquier
,
O.
Copie
,
K.
Dumesnil
,
R.
Ramos
,
D.
Preziosi
,
S.
Petit-Watelot
,
N.
Viart
, and
J.-C.
Rojas-Sánchez
, “
Thermal spin-current generation in the multifunctional ferrimagnet Ga0.6Fe1.4O3
,”
Phys. Rev. Appl.
18
(
5
),
054087
(
2022
).
16.
G. J.
MacDougall
,
V. O.
Garlea
,
A. A.
Aczel
,
H. D.
Zhou
, and
S. E.
Nagler
, “
Magnetic order and ice rules in the multiferroic spinel FeV2O4
,”
Phys. Rev. B
86
(
6
),
060414
(
2012
).
17.
G. J.
MacDougall
,
I.
Brodsky
,
A. A.
Aczel
,
V. O.
Garlea
,
G. E.
Granroth
,
A. D.
Christianson
,
T.
Hong
,
H. D.
Zhou
, and
S. E.
Nagler
, “
Magnons and a two-component spin gap in FeV2O4
,”
Phys. Rev. B
89
(
22
),
224404
(
2014
).
18.
K.-H.
Zhao
,
Y.-H.
Wang
,
X.-L.
Shi
,
N.
Liu
, and
L.-W.
Zhang
, “
Ferroelectricity in the ferrimagnetic phase of Fe1−xMnxV2O4
,”
Chin. Phys. Lett.
32
(
8
),
087503
(
2015
).
19.
Q.
Zhang
,
K.
Singh
,
F.
Guillou
,
C.
Simon
,
Y.
Breard
,
V.
Caignaert
, and
V.
Hardy
, “
Ordering process and ferroelectricity in a spinel derived from FeV2O4
,”
Phys. Rev. B
85
(
5
),
054405
(
2012
).
20.
M. V.
Eremin
, “
Coupling of spins with an electric field in FeV2O4
,”
Phys. Rev. B
100
(
14
),
140404
(
2019
).
21.
B. R.
Myoung
,
S. J.
Kim
,
J. T.
Lim
,
T.
Kouh
, and
C. S.
Kim
, “
Microscopic evidence of magnetic and structure phase transition in multiferroic spinel FeV2O4
,”
AIP Adv.
7
(
5
),
055828
(
2017
).
22.
W.
Xie
,
X.
Xing
, and
Z.
Cao
, “
Successive orbital ordering transitions in FeV2O4 from first-principles calculation
,”
J. Appl. Phys.
126
(
24
),
244904
(
2019
).
23.
S.
Kawaguchi
,
H.
Ishibashi
,
S.
Nishihara
,
S.
Mori
,
J.
Campo
,
F.
Porcher
,
O.
Fabelo
,
K.
Sugimoto
,
J.
Kim
,
K.
Kato
,
M.
Takata
,
H.
Nakao
, and
Y.
Kubota
, “
Orthorhombic distortion and orbital order in the vanadium spinel FeV2O4
,”
Phys. Rev. B
93
(
2
),
024108
(
2016
).
24.
T.
Katsufuji
,
T.
Suzuki
,
H.
Takei
,
M.
Shingu
,
K.
Kato
,
K.
Osaka
,
M.
Takata
,
H.
Sagayama
, and
T.
Arima
, “
Structural and magnetic properties of spinel FeV2O4 with two ions having orbital degrees of freedom
,”
J. Phys. Soc. Jpn.
77
(
5
),
053708
(
2008
).
25.
D.
Zhou
,
R.
Takahashi
,
Y.
Zhou
,
D.
Kim
,
V. K.
Suresh
,
Y.
Chu
,
Q.
He
,
P.
Munroe
,
M.
Lippmaa
,
J.
Seidel
, and
N.
Valanoor
, “
Magnetic and magnetodielectric properties of epitaxial iron vanadate thin films
,”
Adv. Electron. Mater.
3
(
1
),
1600295
(
2017
).
26.
A. A.
Burema
,
J. J. L.
Van Rijn
, and
T.
Banerjee
, “
Temperature-dependent out-of-plane anisotropy in compressively strained La0.67Sr0.33MnO3 thin films
,”
J. Magn. Magn. Mater.
549
,
168910
(
2022
).
27.
X.
Shi
,
Y.
Wang
,
K.
Zhao
,
X.
Lai
, and
L.
Zhang
, “
Strain effects in epitaxial FeV2O4 thin films fabricated by pulsed laser deposition
,”
J. Cryst. Growth
419
,
102
107
(
2015
).
28.
X.
Shi
,
Y.
Wang
,
K.
Zhao
,
N.
Liu
,
G.
Sun
, and
L.
Zhang
, “
Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films
,”
AIP Adv.
5
(
11
),
117146
(
2015
).
29.
D.
Kim
,
D.
Zhou
,
S.
Hu
,
D. H. T.
Nguyen
,
N.
Valanoor
, and
J.
Seidel
, “
Temperature-dependent magnetic domain evolution in noncollinear ferrimagnetic FeV2O4 thin films
,”
ACS Appl. Electron. Mater.
1
(
6
),
817
822
(
2019
).
30.
M.
Althammer
,
S.
Meyer
,
H.
Nakayama
,
M.
Schreier
,
S.
Altmannshofer
,
M.
Weiler
,
H.
Huebl
,
S.
Geprägs
,
M.
Opel
,
R.
Gross
,
D.
Meier
,
C.
Klewe
,
T.
Kuschel
,
J.-M.
Schmalhorst
,
G.
Reiss
,
L.
Shen
,
A.
Gupta
,
Y.-T.
Chen
,
G. E. W.
Bauer
,
E.
Saitoh
, and
S. T. B.
Goennenwein
, “
Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids
,”
Phys. Rev. B
87
(
22
),
224401
(
2013
).
31.
M.
Kawasaki
,
K.
Takahashi
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Ishiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
, “
Atomic control of the SrTiO3 crystal surface
,”
Science
266
(
5190
),
1540
1542
(
1994
).
32.
A.
Peña Corredor
,
L.
Wendling
,
D.
Preziosi
,
L.
Schlur
,
C.
Leuvrey
,
D.
Thiaudière
,
E.
Elklaim
,
N.
Blanc
,
S.
Grenier
,
F.
Roulland
,
N.
Viart
, and
C.
Lefevre
, “
Oxygen crystallographic positions in thin films by non-destructive resonant elastic X-ray scattering
,”
J. Appl. Crystallogr.
55
(
3
),
526
532
(
2022
).
33.
F.
Roulland
,
G.
Roseau
,
A. P.
Corredor
,
L.
Wendling
,
G.
Krieger
,
C.
Lefevre
,
M.
Trassin
,
G.
Pourroy
, and
N.
Viart
, “
Promoting the magnetic exchanges in PLD deposited strained films of FeV2O4 thin films
,”
Mater. Chem. Phys.
276
,
125360
(
2022
).
34.
J. S.
Agustsson
,
U. B.
Arnalds
,
A. S.
Ingason
,
K. B.
Gylfason
,
K.
Johnsen
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
Electrical resistivity and morphology of ultra thin Pt films grown by dc magnetron sputtering on SiO2
,”
J. Phys.: Conf. Ser.
100
(
8
),
082006
(
2008
).
35.
T.
Kosub
,
S.
Vélez
,
J. M.
Gomez-Perez
,
L. E.
Hueso
,
J.
Fassbender
,
F.
Casanova
, and
D.
Makarov
, “
Anomalous Hall-like transverse magnetoresistance in Au thin films on Y3Fe5O12
,”
Appl. Phys. Lett.
113
(
22
),
222409
(
2018
).
36.
T.
Kosub
,
M.
Kopte
,
F.
Radu
,
O. G.
Schmidt
, and
D.
Makarov
, “
All-electric access to the magnetic-field-invariant magnetization of antiferromagnets
,”
Phys. Rev. Lett.
115
(
9
),
097201
(
2015
).
37.
S.
Meyer
,
R.
Schlitz
,
S.
Geprägs
,
M.
Opel
,
H.
Huebl
,
R.
Gross
, and
S. T. B.
Goennenwein
, “
Anomalous Hall effect in YIG|Pt bilayers
,”
Appl. Phys. Lett.
106
(
13
),
132402
(
2015
).
38.
X.
Zhou
,
L.
Ma
,
Z.
Shi
,
W. J.
Fan
,
J.-G.
Zheng
,
R. F. L.
Evans
, and
S. M.
Zhou
, “
Magnetotransport in metal/insulating-ferromagnet heterostructures: Spin Hall magnetoresistance or magnetic proximity effect
,”
Phys. Rev. B
92
(
6
),
060402
(
2015
).
39.
X.
Liang
,
Y.
Zhu
,
B.
Peng
,
L.
Deng
,
J.
Xie
,
H.
Lu
,
M.
Wu
, and
L.
Bi
, “
Influence of interface structure on magnetic proximity effect in Pt/Y3Fe5O12 heterostructures
,”
ACS Appl. Mater. Interfaces
8
(
12
),
8175
8183
(
2016
).
40.
X.
Zhou
,
L.
Ma
,
Z.
Shi
,
G. Y.
Guo
,
J.
Hu
,
R. Q.
Wu
, and
S. M.
Zhou
, “
Tuning magnetotransport in PdPt/Y3Fe5O12: Effects of magnetic proximity and spin-orbit coupling
,”
Appl. Phys. Lett.
105
(
1
),
012408
(
2014
).

Supplementary Material

You do not currently have access to this content.