There is a significant interest in developing advanced materials technologies that will reduce the consumption of fossil fuel resources. One efficient way of reducing energy consumption for heating and cooling applications is the development of a passive and adaptive thermal management system that radiates heat at high temperatures while providing insulation under cooler conditions. Vanadium dioxide (VO2) is a candidate material for this type of adaptive behavior since it transitions from a low temperature reflective state to a high temperature emissive state at 68 °C when deposited upon a dielectric-coated ground plane. Additionally, by doping VO2 with high valence tungsten (W6+), the transition temperature can be reduced to values that are close to room temperature (22 °C). In this Letter, W6+-doped VO2 multilayer composites are designed to utilize thin film interference in order to maximize the infrared (IR) emission contrast between the hot and cold states of VO2 while also reducing the transition temperature. Through careful engineering of the thickness and doping of the VO2 layer within the multilayer film, a 50% emissive contrast was maintained across the 8–13 μm spectral region, while the transition temperature was reduced from 68 °C in the undoped film to 29 °C in the 1.7 at. % W6+.

1.
See https://ourworldindata.org/energy for
H.
Ritchie
and
H.
Roser
, “
Energy, OurWorldInData.org
” (
2020
).
2.
A.
Spence
,
C.
Leygue
,
B.
Bedwell
, and
C.
O'Malley
,
J. Environ. Psychol.
38
,
17
28
(
2014
).
3.
U.S. Energy Information Administration
, see https://www.eia.gov/tools/faqs/faq.php?id=86&t=1 for “
How much energy is consumed in U.S. Buildings?
4.
U.S. Energy Information Administration
, see https://www.eia.gov/energyexplained/electricity/use-of-electricity.php for “
Electricity Explained: Use of Electricity
” (
2021
).
5.
R.
Kandasamy
,
X.
Wang
, and
A. S.
Mujumdar
,
Appl. Therm. Eng.
27
(
17–18
),
2822
2832
(
2007
).
6.
X.
Zhang
,
T.
Lindberg
,
N.
Xiong
,
V.
Vyatkin
, and
A.
Mousavi
,
Energy Procedia
105
,
2047
2052
(
2017
).
7.
K. M.
Al-Obaidi
,
M.
Ismail
,
A.
Malek
, and
A.
Rahman
,
Front. Archit. Res.
3
,
283
297
(
2014
).
8.
D.
Hooi
,
C.
Toe
, and
T.
Kubota
,
Sol. Energy
114
,
229
258
(
2015
).
9.
10.
A.
Khan
,
L.
Carlosena
,
S.
Khorat
,
R.
Khatun
,
Q.
Doan
,
J.
Feng
, and
M.
Santamouris
,
Sol. Energy Adv.
1
,
100009
(
2021
).
11.
X.
Chen
,
M.
Wu
,
X.
Liu
,
D.
Wang
,
F.
Liu
,
Y.
Chen
,
F.
Yi
,
W.
Huang
, and
S.
Wang
,
Nanomaterials
9
,
834
(
2019
).
12.
K.
Nishikawa
,
K.
Yatsugi
,
Y.
Kishida
, and
K.
Itob
,
Appl. Phys. Lett.
114
,
211104
(
2019
).
13.
Z.
Huang
,
S.
Chen
,
C.
Lv
,
Y.
Huang
, and
J.
Lai
,
Appl. Phys. Lett.
101
,
191905
(
2012
).
14.
M.
Nakano
,
K.
Shibuya
,
N.
Ogawa
,
T.
Hatano
,
M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
,
Appl. Phys. Lett.
103
,
153503
(
2013
).
15.
M. A.
Kats
,
D.
Sharma
,
J.
Lin
,
P.
Genevet
,
R.
Blanchard
,
Z.
Yang
,
M.
Qazilbash
,
D. N.
Basov
,
S.
Ramanathan
, and
F.
Capasso
,
Appl. Phys. Lett.
101
,
221101
(
2012
).
16.
K.
Tang
,
K.
Dong
,
J.
Li
,
M. P.
Gordon
,
F. G.
Reichertz
,
H.
Kim
,
Y.
Rho
,
Q.
Wang
,
C.
Lin
,
C. P.
Grigoropoulos
,
A.
Javey
,
J. J.
Urban
,
J.
Yao
,
R.
Levinson
, and
J.
Wu
,
Science
374
,
1504
1509
(
2021
).
17.
Y.
Muraoka
,
Y.
Ueda
, and
Z.
Hiroi
,
J. Phys. Chem. Solid
63
,
965
967
(
2002
).
18.
D. H.
Kim
and
H. S.
Kwok
,
Appl. Phys. Lett.
65
,
3188
(
1994
).
19.
M. J.
Miler
and
W.
Junlan
,
J. Appl. Phys.
117
,
034307
(
2015
).
20.
S.
Wang
,
C.
Li
,
S.
Tian
,
B.
Liu
, and
X.
Zhao
,
Ceram. Int.
46
,
14739
14746
(
2020
).
21.
C.
Ji
,
Z.
Wua
,
X.
Wu
,
J.
Wanga
,
J.
Gou
,
Z.
Huang
,
H.
Zhou
,
W.
Yao
, and
Y.
Jiang
,
Sol. Energy Mater. Sol. Cells
176
,
174
180
(
2018
).
22.
Y.
Cheng
,
X.
Zhang
,
C.
Fang
,
J.
Chen
,
J.
Su
,
Z.
Wang
,
G.
Sun
, and
D.
Liu
,
Ceram. Int.
44
,
20084
20092
(
2018
).
23.
A.
Romanyuk
,
R.
Steiner
,
L.
Marot
, and
P.
Olehafen
,
Sol. Energy Mater. Sol. Cells
91
,
1831
1835
(
2007
).
24.
M.
Soltani
and
M.
Chaker
,
Appl. Phys. Lett.
85
,
1958
(
2004
).
25.
T.
Hajlaoui
,
N.
Emond
,
C.
Quiouette
,
B.
Le Drogoff
,
J.
Margot
, and
M.
Chaker
,
Scr. Mater.
177
,
32
37
(
2020
).
26.
Z.
Huang
,
Z.
Wu
,
C.
Ji
,
J.
Dai
,
Z.
Xiang
,
D.
Wang
,
X.
Dong
, and
Y.
Jiang
,
J. Mater. Sci.
31
,
4150
4160
(
2020
).
27.
M.
Kats
and
F.
Capasso
,
Laser Photonics Rev.
10
(
5
),
735
749
(
2016
).
28.
R.
Zhang
,
Q. S.
Fu
,
C. Y.
Yin
,
C. L.
Li
,
X. H.
Chen
,
G. Y.
Qian
,
C. L.
Lu
,
S. L.
Yuan
,
X. J.
Zhao
, and
H. Z.
Tao
,
Sci. Rep.
8
,
17093
(
2018
).
29.
X.
Tan
,
T.
Yao
,
R.
Long
,
Z.
Sun
,
Y.
Feng
,
H.
Cheng
,
X.
Yuan
,
W.
Zhang
,
Q.
Liu
,
C.
Wu
,
Y.
Xie
, and
S.
Wei
,
Sci. Rep.
2
,
466
(
2012
).
30.
G.
Karaoglan-Bebek
,
M. N. F.
Hoque
,
M.
Holtz
,
Z.
Fan
, and
A. A.
Bernussi
,
Appl. Phys. Lett.
105
,
201902
(
2014
).
31.
K.
Tang
,
K.
Dong
,
C. J.
Nicolai
,
Y.
Li
,
J.
Li
,
S.
Lou
,
C. W.
Qiu
,
D. H.
Raulet
,
Y.
Yao
, and
J.
Wu
,
Sci. Adv.
6
,
868
(
2020
).
32.
A.
Yano
,
H.
Clarke
,
D. G.
Sellers
,
E. J.
Braham
,
T. E. G.
Alivio
,
S.
Banerjee
, and
P. J.
Shamberger
,
J. Phys. Chem. C
124
,
21223
21231
(
2020
).
33.
A.
Abdelkadir
,
J. L.
Victor
,
G.
Vignaud
,
C.
Marcel
,
M.
Sahal
,
M.
Maaza
,
M.
Chaker
, and
A.
Gibaud
,
Thin Solid Films
772
,
139805
(
2023
).

Supplementary Material

You do not currently have access to this content.