Directed transport and control of droplets is essential for many modern technologies. Here, we propose an active control mode that combines corona discharge and contact electrification to efficiently drive the droplet or droplet group in a directed manner. In particular, we also implement a continuous coalescence of droplets, similar to dominoes. Moreover, due to the high adhesion effect caused by contact electrification, the droplet can stick on a slope without sliding down, even when the corona discharge is turned off. Interestingly, it can easily slide down when a conductor is nearby. Therefore, a droplet climbing, braking, and downhill system can be realized, and the gravitational potential energy stored by the droplet can be effectively regulated by the applied voltage. This work opens the possibility of droplet manipulation in modern applications such as miniaturized energy storage, biochemical medicine, and self-cleaning.

1.
F.
Chu
,
S.
Li
,
Z.
Hu
, and
X.
Wu
,
Appl. Phys. Lett.
122
(
16
),
160503
(
2023
).
2.
L.
Jiao
,
Y. X.
Wu
,
Y. J.
Hu
,
Q. Q.
Guo
,
H. P.
Wu
,
H. Y.
Yu
,
L. Q.
Deng
,
D. L.
Li
, and
L.
Li
,
Small
11
,
2206274
(
2023
).
3.
Z.
Xie
,
H.
Wang
,
Y.
Geng
,
M.
Li
,
Q.
Deng
,
Y.
Tian
,
R.
Chen
,
X.
Zhu
, and
Q.
Liao
,
ACS Appl. Mater. Interfaces
13
(
40
),
48308
(
2021
).
4.
R.
Deb
,
B.
Sarma
, and
A.
Dalal
,
Langmuir
39
(
23
),
8244
(
2023
).
5.
L.
Jiao
,
R.
Chen
,
X.
Zhu
,
Q.
Liao
,
H.
Wang
,
L.
An
,
J.
Zhu
,
X.
He
, and
H.
Feng
,
J. Phys. Chem. Lett.
10
(
5
),
1068
(
2019
).
6.
J.-L.
Zhu
,
W.-Y.
Shi
,
T.-S.
Wang
, and
L.
Feng
,
Appl. Phys. Lett.
116
(
24
),
243703
(
2020
).
7.
R.
Lirette
and
J.
Mobley
,
Appl. Phys. Lett.
121
(
24
),
244102
(
2022
).
8.
K.
Yamamoto
,
S.
Takagi
,
Y.
Ichikawa
, and
M.
Motosuke
,
J. Appl. Phys.
132
(
20
),
204701
(
2022
).
9.
R. T.
Mallea
,
A.
Bolopion
,
J. C.
Beugnot
,
P.
Lambert
, and
M.
Gauthier
,
IEEE-ASME Trans. Mechatronics
22
(
2
),
693
(
2017
).
10.
F.
Lin
,
A. N.
Quraishy
,
R.
Li
,
G.
Yang
,
M.
Mohebinia
,
T.
Tong
,
Y.
Qiu
,
T.
Vishal
,
J.
Zhao
,
W.
Zhang
,
H.
Zhong
,
H.
Zhang
,
C.
Zhou
,
X.
Tong
,
P.
Yu
,
J.
Hu
,
S.
Dong
,
D.
Liu
,
Z.
Wang
,
J. R.
Schaibley
, and
J.
Bao
,
Mater. Today
2021
,
51
.
11.
Y.
Liu
,
H.
Zhang
,
Y.
Zhu
,
J.
Chen
,
P.
Wang
,
S.
Dai
,
X.
Li
, and
G.
Dong
,
Nano Lett.
23
(
12
),
5696
(
2023
).
12.
X.
Li
,
P.
Bista
,
A. Z.
Stetten
,
H.
Bonart
,
M. T.
Schuer
,
S.
Hardt
,
F.
Bodziony
,
H.
Marschall
,
A.
Saal
,
X.
Deng
,
R.
Berger
,
S. A. L.
Weber
, and
H. J.
Butt
,
Nat. Phys.
18
(
6
),
713
(
2022
).
13.
W.
Xu
,
X.
Li
,
J.
Brugger
, and
X.
Liu
,
Nano Energy
98
,
107166
(
2022
).
14.
D. P.
Ura
,
J.
Knapczyk-Korczak
,
P. K.
Szewczyk
,
E. A.
Sroczyk
,
T.
Busolo
,
M. M.
Marzec
,
A.
Bernasik
,
S.
Kar-Narayan
, and
U.
Stachewicz
,
ACS Nano
15
(
5
),
8848
(
2021
).
15.
A. C.
Ricchiuto
,
C. A.
Borghi
,
A.
Cristofolini
, and
G.
Neretti
,
Plasma Process. Polym.
18
(
4
),
e2000214
(
2021
).
16.
Z.
Yuan
,
M.
Matsumoto
, and
R.
Kurose
,
Int. J. Multiphase Flow
138
,
103611
(
2021
).
17.
V. M.
Peterson
,
K. X.
Zhang
,
N.
Kumar
,
J.
Wong
,
L.
Li
,
D. C.
Wilson
,
R.
Moore
,
T. K.
McClanahan
,
S.
Sadekova
, and
J. A.
Klappenbach
,
Nat. Biotechnol.
35
(
10
),
936
(
2017
).
18.
C. M.
Hindson
,
J. R.
Chevillet
,
H. A.
Briggs
,
E. N.
Gallichotte
,
I. K.
Ruf
,
B. J.
Hindson
,
R. L.
Vessella
, and
M.
Tewari
,
Nat. Methods
10
(
10
),
1003
(
2013
).
19.
Z.
Yang
,
J.
Wei
,
Y. I.
Sobolev
, and
B. A.
Grzybowski
,
Nature
553
(
7688
),
313
(
2018
).
20.
Z. H.
Lin
,
G.
Cheng
,
L.
Lin
,
S.
Lee
, and
Z. L.
Wang
,
Angew. Chem., Int. Ed.
52
(
48
),
12545
(
2013
).
21.
C.
Cai
,
B.
Luo
,
Y.
Liu
,
Q.
Fu
,
T.
Liu
,
S.
Wang
, and
S.
Nie
,
Mater. Today
52
,
299
(
2022
).
22.
S.
Lin
,
L.
Xu
,
A. C.
Wang
, and
Z. L.
Wang
,
Nat. Commun.
11
(
1
),
399
(
2020
).

Supplementary Material

You do not currently have access to this content.