High mobility is a crucial requirement for a large variety of electronic device applications. The state of the art for high-quality graphene devices is based on heterostructures made with graphene encapsulated in > 40 nm-thick flakes of hexagonal boron nitride (hBN). Unfortunately, scaling up multilayer hBN while precisely controlling the number of layers remains an outstanding challenge, resulting in a rough material unable to enhance the mobility of graphene. This leads to the pursuit of alternative, scalable materials, which can be used as substrates and encapsulants for graphene. Tungsten disulfide (WS2) is a transition metal dichalcogenide, which was grown in large (∼mm-size) multi-layers by chemical vapor deposition. However, the resistance vs gate voltage characteristics when gating graphene through WS2 exhibit largely hysteretic shifts of the charge neutrality point on the order of Δ n  3 × 1011 cm−2, hindering the use of WS2 as a reliable encapsulant. The hysteresis originates due to the charge traps from sulfur vacancies present in WS2. In this work, we report the use of WS2 as a substrate and overcome the hysteresis issues by chemically treating WS2 with a super-acid, which passivates these vacancies and strips the surface from contaminants. The hysteresis is significantly reduced by about two orders of magnitude, down to values as low as Δ n  2 × 109 cm−2, while the room-temperature mobility of WS2-encapsulated graphene is as high as ∼62 × 103 cm2 V−1 s−1 at a carrier density of n ∼ 1  × 10 12 cm−2. Our results promote WS2 as a valid alternative to hBN as an encapsulant for high-performance graphene devices.

1.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley and Sons, Inc
.,
2006
).
2.
M.
Romagnoli
,
V.
Sorianello
,
M.
Midrio
,
F. H. L.
Koppens
,
C.
Huyghebaert
,
D.
Neumaier
,
P.
Galli
,
W.
Templ
,
A.
D'Errico
, and
A. C.
Ferrari
, “
Graphene-based integrated photonics for next-generation datacom and telecom
,”
Nat. Rev. Mater.
3
,
392
(
2018
).
3.
Y.
Kang
,
H. D.
Liu
,
M.
Morse
,
M. J.
Paniccia
,
M.
Zadka
,
S.
Litski
,
G.
Sarid
,
A.
Pauchard
,
Y. H.
Kuo
,
H. W.
Chen
,
W. S.
Zaoui
,
J. E.
Bowers
,
A.
Beling
,
D. C.
McIntosh
,
X.
Zheng
, and
J. C.
Campbell
, “
Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product
,”
Nat. Photonics
3
,
59
(
2009
).
4.
J. E.
Muench
,
A.
Ruocco
,
M. A.
Giambra
,
V.
Miseikis
,
D.
Zhang
,
J.
Wang
,
H. F. Y.
Watson
,
G. C.
Park
,
S.
Akhavan
,
V.
Sorianello
,
M.
Midrio
,
A.
Tomadin
,
C.
Coletti
,
M.
Romagnoli
,
A. C.
Ferrari
, and
I.
Goykhman
, “
Waveguide-integrated, plasmonic enhanced graphene photodetectors
,”
Nano Lett.
19
,
7632
(
2019
).
5.
Z.
Wang
,
L.
Banszerus
,
M.
Otto
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Stampfer
, and
D.
Neumaier
, “
Encapsulated graphene-based Hall sensors on foil with increased sensitivity
,”
Phys. Status Solidi B
253
,
2316
(
2016
).
6.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
(
2013
).
7.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
,
1308
(
2008
).
8.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J. S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H.
Ri Kim
,
Y. I.
Song
,
Y. J.
Kim
,
K. S.
Kim
,
B.
Özyilmaz
,
J. H.
Ahn
,
B. H.
Hong
, and
S.
Iijima
, “
Roll-to-roll production of 30-inch graphene films for transparent electrodes
,”
Nat. Nanotechnol.
5
,
574
(
2010
).
9.
E. S.
Polsen
,
D. Q.
McNerny
,
B.
Viswanath
,
S. W.
Pattinson
, and
A.
John Hart
, “
High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor
,”
Sci. Rep.
5
,
10257
(
2015
).
10.
S.
Goossens
,
G.
Navickaite
,
C.
Monasterio
,
S.
Gupta
,
J. J.
Piqueras
,
R.
Pérez
,
G.
Burwell
,
I.
Nikitskiy
,
T.
Lasanta
,
T.
Galán
,
E.
Puma
,
A.
Centeno
,
A.
Pesquera
,
A.
Zurutuza
,
G.
Konstantatos
, and
F.
Koppens
, “
Broadband image sensor array based on graphene-CMOS integration
,”
Nat. Photonics
11
,
366
(
2017
).
11.
D.
Akinwande
,
C.
Huyghebaert
,
C. H.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L. J.
Li
,
H. S. P.
Wong
, and
F. H. L.
Koppens
, “
Graphene and two-dimensional materials for silicon technology
,”
Nature
573
,
507
(
2019
).
12.
E. H.
Hwang
and
S.
Das Sarma
, “
Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
,”
Phys. Rev. B
77
,
115449
(
2008
).
13.
N. J. G.
Couto
,
D.
Costanzo
,
S.
Engels
,
D. K.
Ki
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Stampfer
,
F.
Guinea
, and
A. F.
Morpurgo
, “
Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices
,”
Phys. Rev. X
4
,
041019
(
2014
).
14.
C.
Neumann
,
S.
Reichardt
,
P.
Venezuela
,
M.
Drögeler
,
L.
Banszerus
,
M.
Schmitz
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Mauri
,
B.
Beschoten
,
S. V.
Rotkin
, and
C.
Stampfer
, “
Raman spectroscopy as probe of nanometre-scale strain variations in graphene
,”
Nat. Commun.
6
,
8429
(
2015
).
15.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
(
2010
).
16.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
(
2008
).
17.
M. A.
Giambra
,
V.
Mišeikis
,
S.
Pezzini
,
S.
Marconi
,
A.
Montanaro
,
F.
Fabbri
,
V.
Sorianello
,
A. C.
Ferrari
,
C.
Coletti
, and
M.
Romagnoli
, “
Wafer-scale integration of graphene-based photonic devices
,”
ACS Nano
15
,
3171
(
2021
).
18.
S.
Kim
,
J.
Nah
,
I.
Jo
,
D.
Shahrjerdi
,
L.
Colombo
,
Z.
Yao
,
E.
Tutuc
, and
S. K.
Banerjee
, “
Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric
,”
Appl. Phys. Lett.
94
,
062107
(
2009
).
19.
J.
Gun Oh
,
S.
Ki Hong
,
C. K.
Kim
,
J.
Hoon Bong
,
J.
Shin
,
S. Y.
Choi
, and
B. J.
Cho
, “
High performance graphene field effect transistors on an aluminum nitride substrate with high surface phonon energy
,”
Appl. Phys. Lett.
104
,
193112
(
2014
).
20.
M. E.
Ramón
,
K. N.
Parrish
,
S. F.
Chowdhury
,
C. W.
Magnuson
,
H. C. P.
Movva
,
R. S.
Ruoff
,
S. K.
Banerjee
, and
D.
Akinwande
, “
Three-gigahertz graphene frequency doubler on quartz operating beyond the transit frequency
,”
IEEE Trans. Nanotechnol.
11
,
877
(
2012
).
21.
N. J. G.
Couto
,
B.
Sacépé
, and
A. F.
Morpurgo
, “
Transport through graphene on SrTiO3
,”
Phys. Rev. Lett.
107
,
225501
(
2011
).
22.
P.
Klar
,
E.
Lidorikis
,
A.
Eckmann
,
I. A.
Verzhbitskiy
,
A. C.
Ferrari
, and
C.
Casiraghi
, “
Raman scattering efficiency of graphene
,”
Phys. Rev. B
87
,
205435
(
2013
).
23.
D. G.
Purdie
,
N. M.
Pugno
,
T.
Taniguchi
,
K.
Watanabe
,
A. C.
Ferrari
, and
A.
Lombardo
, “
Cleaning interfaces in layered materials heterostructures
,”
Nat. Commun.
9
,
5387
(
2018
).
24.
F.
Pizzocchero
,
L.
Gammelgaard
,
B. S.
Jessen
,
J. M.
Caridad
,
L.
Wang
,
J.
Hone
,
P.
Boggild
, and
T. J.
Booth
, “
The hot pick-up technique for batch assembly of van der Waals heterostructures
,”
Nat. Commun.
7
,
11894
(
2016
).
25.
Z.
Huang
,
A.
Alharbi
,
W.
Mayer
,
E.
Cuniberto
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Shabani
, and
D.
Shahrjerdi
, “
Versatile construction of van der Waals heterostructures using a dual-function polymeric film
,”
Nat. Commun.
11
,
3029
(
2020
).
26.
S.
Pezzini
,
V.
Mišeikis
,
S.
Pace
,
F.
Rossella
,
K.
Watanabe
,
T.
Taniguchi
, and
C.
Coletti
, “
High-quality electrical transport using scalable CVD graphene
,”
2D Mater.
7
,
041003
(
2020
).
27.
S. M.
Kim
,
A.
Hsu
,
M. H.
Park
,
S. H.
Chae
,
S. J.
Yun
,
J. S.
Lee
,
D. H.
Cho
,
W.
Fang
,
C.
Lee
,
T.
Palacios
,
M.
Dresselhaus
,
K. K.
Kim
,
Y. H.
Lee
, and
J.
Kong
, “
Synthesis of large-area multilayer hexagonal boron nitride for high material performance
,”
Nat. Commun.
6
,
8662
(
2015
).
28.
Y.
Shen
,
W.
Zheng
,
K.
Zhu
,
Y.
Xiao
,
C.
Wen
,
Y.
Liu
,
X.
Jing
,
M.
Lanza
,
Y.
Shen
,
W.
Zheng
,
Y.
Xiao
,
C.
Wen
,
Y.
Liu
,
X.
Jing
,
K.
Zhu
, and
M.
Lanza
, “
Variability and yield in h-BN-based memristive circuits: The role of each type of defect
,”
Adv. Mater.
33
,
2103656
(
2021
).
29.
V.
Shautsova
,
A. M.
Gilbertson
,
N. C. G.
Black
,
S. A.
Maier
, and
L. F.
Cohen
, “
Hexagonal boron nitride assisted transfer and encapsulation of large area CVD graphene
,”
Sci. Rep.
6
,
30210
(
2016
).
30.
T.
Schram
,
Q.
Smets
,
B.
Groven
,
M. H.
Heyne
,
E.
Kunnen
,
A.
Thiam
,
K.
Devriendt
,
A.
Delabie
,
D.
Lin
,
M.
Lux
,
D.
Chiappe
,
I.
Asselberghs
,
S.
Brus
,
C.
Huyghebaert
,
S.
Sayan
,
A.
Juncker
,
M.
Caymax
, and
I. P.
Radu
, “
WS2 transistors on 300 mm wafers with BEOL compatibility
,” in
47th European Solid-State Device Research Conference, ESSDERC 2017, 11-14 September 2017
,
Leuven, Belgium
(
2017
).
31.
J.
Wang
,
X.
Xu
,
T.
Cheng
,
L.
Gu
,
R.
Qiao
,
Z.
Liang
,
D.
Ding
,
H.
Hong
,
P.
Zheng
,
Z.
Zhang
,
Z.
Zhang
,
S.
Zhang
,
G.
Cui
,
C.
Chang
,
C.
Huang
,
J.
Qi
,
J.
Liang
,
C.
Liu
,
Y.
Zuo
,
G.
Xue
,
X.
Fang
,
J.
Tian
,
M.
Wu
,
Y.
Guo
,
Z.
Yao
,
Q.
Jiao
,
L.
Liu
,
P.
Gao
,
Q.
Li
,
R.
Yang
,
G.
Zhang
,
Z.
Tang
,
D.
Yu
,
E.
Wang
,
J.
Lu
,
Y.
Zhao
,
S.
Wu
,
F.
Ding
, and
K.
Liu
, “
Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire
,”
Nat. Nanotechnol.
17
,
33
(
2022
).
32.
J.
Zhu
,
J.-H.
Park
,
S. A.
Vitale
,
W.
Ge
,
G. S.
Jung
,
J.
Wang
,
M.
Mohamed
,
T.
Zhang
,
M.
Ashok
,
M.
Xue
,
X.
Zheng
,
Z.
Wang
,
J.
Hansryd
,
A. P.
Chandrakasan
,
J.
Kong
, and
T.
Palacios
, “
Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform
,”
Nat. Nanotechnol.
18
,
456
(
2023
).
33.
J. S.
Lee
,
S. H.
Choi
,
S. J.
Yun
,
Y. I.
Kim
,
S.
Boandoh
,
J.-H.
Park
,
B. G.
Shin
,
H.
Ko
,
S. H.
Lee
,
Y.-M.
Kim
,
Y. H.
Lee
,
K. K.
Kim
, and
S. M.
Kim
, “
Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
,”
Science
362
,
817
(
2018
).
34.
L.
Wang
,
X.
Xu
,
L.
Zhang
,
R.
Qiao
,
M.
Wu
,
Z.
Wang
,
S.
Zhang
,
J.
Liang
,
Z.
Zhang
,
Z.
Zhang
,
W.
Chen
,
X.
Xie
,
J.
Zong
,
Y.
Shan
,
Y.
Guo
,
M.
Willinger
,
H.
Wu
,
Q.
Li
,
W.
Wang
,
P.
Gao
,
S.
Wu
,
Y.
Zhang
,
Y.
Jiang
,
D.
Yu
,
E.
Wang
,
X.
Bai
,
Z.-J.
Wang
,
F.
Ding
, and
K.
Liu
, “
Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper
,”
Nature
570
,
91
(
2019
).
35.
T.-A.
Chen
,
C.-P.
Chuu
,
C.-C.
Tseng
,
C.-K.
Wen
,
H. S. P.
Wong
,
S.
Pan
,
R.
Li
,
T.-A.
Chao
,
W.-C.
Chueh
,
Y.
Zhang
,
Q.
Fu
,
B. I.
Yakobson
,
W.-H.
Chang
, and
L.-J.
Li
, “
Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
,”
Nature
579
,
219
(
2020
).
36.
L.
Banszerus
,
T.
Sohier
,
A.
Epping
,
F.
Winkler
,
F.
Libisch
,
F.
Haupt
,
K.
Watanabe
,
T.
Taniguchi
,
K.
Müller-Caspary
,
N.
Marzari
,
F.
Mauri
,
B.
Beschoten
, and
C.
Stampfer
, “
Extraordinary high room-temperature carrier mobility in graphene-WSe2 heterostructures
,” arXiv:1909.09523 (
2019
).
37.
L.
Banszerus
,
H.
Janssen
,
M.
Otto
,
A.
Epping
,
T.
Taniguchi
,
K.
Watanabe
,
B.
Beschoten
,
D.
Neumaier
, and
C.
Stampfer
, “
Identifying suitable substrates for high-quality graphene-based heterostructures
,”
2D Mater.
4
,
025030
(
2017
).
38.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
,
187401
(
2006
).
39.
A. C.
Ferrari
and
D. M.
Basko
, “
Raman spectroscopy as a versatile tool for studying the properties of graphene
,”
Nat. Nanotechnol.
8
,
235
(
2013
).
40.
C.
Jung
,
S. M.
Kim
,
H.
Moon
,
G.
Han
,
J.
Kwon
,
Y. K.
Hong
,
I.
Omkaram
,
Y.
Yoon
,
S.
Kim
, and
J.
Park
, “
Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector
,”
Sci. Rep.
5
,
15313
(
2015
).
41.
P. D.
Cunningham
,
K. M.
McCreary
,
A. T.
Hanbicki
,
M.
Currie
,
B. T.
Jonker
, and
L. M.
Hayden
, “
Charge trapping and exciton dynamics in large-area CVD grown MoS2
,”
J. Phys. Chem. C
120
,
5819
(
2016
).
42.
T.
Schram
,
Q.
Smets
,
B.
Groven
,
M. H.
Heyne
,
E.
Kunnen
,
A.
Thiam
,
K.
Devriendt
,
A.
Delabie
,
D.
Lin
,
M.
Lux
,
D.
Chiappe
,
I.
Asselberghs
,
S.
Brus
,
C.
Huyghebaert
,
S.
Sayan
,
A.
Juncker
,
M.
Caymax
, and
I. P.
Radu
, “
WS2 transistors on 300 Mm wafers with BEOL compatibility
,” in
Proceedings of European Solid-State Device Research Conference
(
IEEE
,
2017
), p.
212
.
43.
H.
Wang
,
D.
Ren
,
C.
Lu
, and
X.
Yan
, “
Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories
,”
Appl. Phys. Lett.
112
,
231903
(
2018
).
44.
H.
An
,
Y. H.
Lee
,
J. H.
Lee
,
C.
Wu
,
B. M.
Koo
, and
T. W.
Kim
, “
Highly stable and flexible memristive devices based on polyvinylpyrrolidone: WS2 quantum dots
,”
Sci. Rep.
10
,
5793
(
2020
).
45.
H.
Wang
,
Y.
Wu
,
C.
Cong
,
J.
Shang
, and
T.
Yu
, “
Hysteresis of electronic transport in graphene transistors
,”
ACS Nano
4
,
7221
(
2010
).
46.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
47.
J.
Roh
,
J. H.
Lee
,
S. H.
Jin
, and
C.
Lee
, “
Negligible hysteresis of molybdenum disulfide field-effect transistors through thermal annealing
,”
J. Inf. Disp.
17
,
103
(
2016
).
48.
C.
Lan
,
X.
Kang
,
Y.
Meng
,
R.
Wei
,
X.
Bu
,
S.
Yip
, and
J. C.
Ho
, “
The origin of gate bias stress instability and hysteresis in monolayer WS2 transistors
,”
Nano Res.
13
,
3278
(
2020
).
49.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
,
G.
Long
,
Y.
Shi
,
L.
Sun
,
J.
Wang
, and
X.
Wang
, “
Hopping transport through defect-induced localized states in molybdenum disulphide
,”
Nat. Commun.
4
,
2642
(
2013
).
50.
M.
Amani
,
D. H.
Lien
,
D.
Kiriya
,
J.
Xiao
,
A.
Azcatl
,
J.
Noh
,
S. R.
Madhvapathy
,
R.
Addou
,
K. C.
Santosh
,
M.
Dubey
,
K.
Cho
,
R. M.
Wallace
,
S. C.
Lee
,
J. H.
He
,
J. W.
Ager
,
X.
Zhang
,
E.
Yablonovitch
, and
A.
Javey
, “
Near-unity photoluminescence quantum yield in MoS2
,”
Science
350
,
1065
(
2015
).
51.
H.
Kim
,
D. H.
Lien
,
M.
Amani
,
J. W.
Ager
, and
A.
Javey
, “
Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment
,”
ACS Nano
11
,
5179
(
2017
).
52.
H.
Bretscher
,
Z.
Li
,
J.
Xiao
,
D. Y.
Qiu
,
S.
Refaely-Abramson
,
J. A.
Alexander-Webber
,
A.
Tanoh
,
Y.
Fan
,
G.
Delport
,
C. A.
Williams
,
S. D.
Stranks
,
S.
Hofmann
,
J. B.
Neaton
,
S. G.
Louie
, and
A.
Rao
, “
Rational passivation of sulfur vacancy defects in two-dimensional transition metal dichalcogenides
,”
ACS Nano
15
,
8780
(
2021
).
53.
H.
Nan
,
Z.
Wang
,
W.
Wang
,
Z.
Liang
,
Y.
Lu
,
Q.
Chen
,
D.
He
,
P.
Tan
,
F.
Miao
,
X.
Wang
,
J.
Wang
, and
Z.
Ni
, “
Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding
,”
ACS Nano
8
,
5738
(
2014
).
54.
L.
Li
and
E. A.
Carter
, “
Defect-mediated charge-carrier trapping and nonradiative recombination in WSe2 monolayers
,”
J. Am. Chem. Soc.
141
,
10451
(
2019
).
55.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
, “
Electronic properties of two-dimensional systems
,”
Rev. Mod. Phys.
54
,
437
(
1982
).
56.
A.
Laturia
,
M. L.
Van de Put
, and
W. G.
Vandenberghe
, “
Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk
,”
npj 2D Mater. Appl.
2
,
6
(
2018
).
57.
J.
Xia
,
F.
Chen
,
J.
Li
, and
N.
Tao
, “
Measurement of the quantum capacitance of graphene
,”
Nat. Nanotechnol.
4
,
505
(
2009
).
58.
M.
Bonmann
,
A.
Vorobiev
,
J.
Stake
, and
O.
Engström
, “
Effect of oxide traps on channel transport characteristics in graphene field effect transistors
,”
J. Vac. Sci. Technol., B
35
,
01A115
(
2017
).
59.
Z.
Lin
,
B. R.
Carvalho
,
E.
Kahn
,
R.
Lv
,
R.
Rao
,
H.
Terrones
,
M. A.
Pimenta
, and
M.
Terrones
, “
Defect engineering of two-dimensional transition metal dichalcogenides
,”
2D Mater.
3
,
022002
(
2016
).
60.
Y.
Liu
,
P.
Stradins
,
S.-H.
Wei
,
Y.
Liu
,
P.
Stradins
, and
S.-H.
Wei
, “
Air passivation of chalcogen vacancies in two-dimensional semiconductors
,”
Angew Chem., Int. Ed.
55
,
965
(
2016
).
61.
J.
Pető
,
T.
Ollár
,
P.
Vancsó
,
Z. I.
Popov
,
G. Z.
Magda
,
G.
Dobrik
,
C.
Hwang
,
P. B.
Sorokin
, and
L.
Tapasztó
, “
Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions
,”
Nat. Chem.
10
,
1246
(
2018
).
62.
S.
Barja
,
S.
Refaely-Abramson
,
B.
Schuler
,
D. Y.
Qiu
,
A.
Pulkin
,
S.
Wickenburg
,
H.
Ryu
,
M. M.
Ugeda
,
C.
Kastl
,
C.
Chen
,
C.
Hwang
,
A.
Schwartzberg
,
S.
Aloni
,
S. K.
Mo
,
D.
Frank Ogletree
,
M. F.
Crommie
,
O. V.
Yazyev
,
S. G.
Louie
,
J. B.
Neaton
, and
A.
Weber-Bargioni
, “
Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides
,”
Nat. Commun.
10
,
3382
(
2019
).
63.
W.
Wang
,
L.
Bai
,
C.
Yang
,
K.
Fan
,
Y.
Xie
, and
M.
Li
, “
The electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS2: A first-principles study
,”
Matererials
11
,
218
(
2018
).
64.
Z.
He
,
X.
Wang
,
W.
Xu
,
Y.
Zhou
,
Y.
Sheng
,
Y.
Rong
,
J. M.
Smith
, and
J. H.
Warner
, “
Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing
,”
ACS Nano
10
,
5847
(
2016
).
65.
Y.
Liu
,
H.
Liu
,
J.
Wang
, and
D.
Liu
, “
Defect-type-dependent carrier lifetimes in monolayer WS2 films
,”
J. Phys. Chem. C
126
,
4929
(
2022
).
66.
A.
Das
,
S.
Pisana
,
B.
Chakraborty
,
S.
Piscanec
,
S. K.
Saha
,
U. V.
Waghmare
,
K. S.
Novoselov
,
H. R.
Krishnamurthy
,
A. K.
Geim
,
A. C.
Ferrari
, and
A. K.
Sood
, “
Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
,”
Nat. Nanotechnol.
3
,
210
(
2008
).
67.
V. E.
Dorgan
,
M.-H.
Bae
, and
E.
Pop
, “
Mobility and saturation velocity in graphene on SiO2
,”
Appl. Phys. Lett.
97
,
082112
(
2010
).
68.
A.
Principi
,
M.
Carrega
,
M. B.
Lundeberg
,
A.
Woessner
,
F. H. L.
Koppens
,
G.
Vignale
, and
M.
Polini
, “
Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride
,”
Phys. Rev. B
90
,
165408
(
2014
).
69.
M. A.
Yamoah
,
W.
Yang
,
E.
Pop
, and
D.
Goldhaber-Gordon
, “
High-velocity saturation in graphene encapsulated by hexagonal boron nitride
,”
ACS Nano
11
,
9914
(
2017
).
70.
Y.
Fan
,
A. W.
Robertson
,
Y.
Zhou
,
Q.
Chen
,
X.
Zhang
,
N. D.
Browning
,
H.
Zheng
,
M. H.
Rümmeli
, and
J. H.
Warner
, “
Electrical breakdown of suspended mono- and few-layer tungsten disulfide via sulfur depletion identified by in situ atomic imaging
,”
ACS Nano
11
,
9435
(
2017
).
71.
J. W.
McPherson
,
J.
Kim
,
A.
Shanware
,
H.
Mogul
, and
J.
Rodriguez
, “
Trends in the ultimate breakdown strength of high dielectric-constant materials
,”
IEEE Trans. Electron Devices
50
,
1771
(
2003
).

Supplementary Material

You do not currently have access to this content.