Despite extensive research on droplet impact behavior on superhydrophobic surfaces at high Weber numbers, there remains limited understanding of their dynamics at low Weber numbers, particularly during the retraction stage. In this study, we investigate the dynamic characteristics of droplet impact on superhydrophobic surfaces and reveal a unique re-spreading behavior during the retraction stage at smaller Weber numbers. A critical Weber number to trigger the re-spreading is identified as 4.9. A dimensionless analysis of the impact force, characterized by the dimensionless pressure, shows that the re-spreading phenomenon is the result of the competition between the inward motion driven by inertial effect and the outward expansion caused by the capillary oscillations on the contact line, which occurs only at low Weber numbers. Such a study offers insights into the dynamic characteristics of droplet impact on superhydrophobic surfaces at low Weber numbers and is of high implications for a number of related applications, such as trickle bed reactors and defrosting/deicing.

1.
C. D.
Modak
,
A.
Kumar
,
A.
Tripathy
, and
P.
Sen
,
Nat. Commun.
11
,
4327
(
2020
).
2.
J.
Kim
,
Int. J. Heat Fluid Flow
28
,
753
(
2007
).
3.
W.
Xu
,
H.
Zheng
,
Y.
Liu
,
X.
Zhou
,
C.
Zhang
,
Y.
Song
,
X.
Deng
,
M.
Leung
,
Z.
Yang
,
R. X.
Xu
,
Z. L.
Wang
,
X. C.
Zeng
, and
Z.
Wang
,
Nature
578
,
392
(
2020
).
4.
H.
Li
,
W.
Fang
,
Y.
Li
,
Q.
Yang
,
M.
Li
,
Q.
Li
,
X.-Q.
Feng
, and
Y.
Song
,
Nat. Commun.
10
,
950
(
2019
).
5.
X.
Wang
,
J.
Zeng
,
X.
Yu
, and
Y.
Zhang
,
J. Mater. Chem. A
7
,
5426
(
2019
).
6.
Y.
Shu
,
F.
Chu
,
Z.
Hu
,
J.
Gao
,
X.
Wu
,
Z.
Dong
, and
Y.
Feng
,
ACS Appl. Mater. Interfaces
14
,
57340
(
2022
).
7.
Z.
Wu
,
Adv. Colloid Interface
256
,
23
47
(
2018
).
8.
S.
Lin
,
B.
Zhao
,
S.
Zou
,
J.
Guo
,
Z.
Wei
, and
L.
Chen
,
J. Colloid Interface Sci.
516
,
86
(
2018
).
9.
J.
De Ruiter
,
D.
Soto
, and
K. K.
Varanasi
,
Nat. Phys.
14
,
35
(
2018
).
10.
Y. T.
Aksoy
,
P.
Eneren
,
E.
Koos
, and
M. R.
Vetrano
,
J. Colloid Interface Sci.
606
,
434
(
2022
).
11.
P.
Garcia-Geijo
,
E. S.
Quintero
,
G.
Riboux
, and
J. M.
Gordillo
,
J. Fluid Mech.
917
,
A50
(
2021
).
12.
Y.
Fan
,
C.
Wu
,
J.
Yang
,
Y.
Wang
,
Y.
Zhou
,
J.
Zhou
,
J.
Luo
,
J.
Zhang
,
S.
Huang
, and
X.
Tian
,
Chem. Eng. J.
448
,
137638
(
2022
).
13.
J. C.
Bird
,
R.
Dhiman
,
H. M.
Kwon
, and
K. K.
Varanasi
,
Nature
503
,
385
(
2013
).
14.
C.
Clanet
,
C.
Beguin
,
D.
Richard
, and
D.
Quere
,
J. Fluid Mech.
517
,
199
(
2004
).
15.
N.
Laan
,
K. G.
de Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
,
Phys. Rev. Appl.
2
,
044018
(
2014
).
16.
X.
Zhang
,
Z.
Zhu
,
C.
Zhang
, and
C.
Yang
,
Appl. Phys. Lett.
117
,
151602
(
2020
).
17.
D.
Richard
,
C.
Clanet
, and
D.
Quere
,
Nature
417
,
811
(
2002
).
18.
Z.
Hu
,
F.
Chu
, and
X.
Wu
,
Extreme Mech. Lett.
52
,
101665
(
2022
).
19.
B.
Zhang
,
V.
Sanjay
,
S.
Shi
,
Y.
Zhao
,
C.
Lv
,
X. Q.
Feng
, and
D.
Lohse
,
Phys. Rev. Lett.
129
,
104051
(
2022
).
20.
H.
Liu
,
F.
Chu
,
J.
Zhang
, and
D.
Wen
,
Phys. Fluids
5
,
074201
(
2020
).
21.
Z.
Fu
,
H.
Jin
,
J.
Zhang
,
T.
Xue
, and
D.
Wen
,
Phys. Fluids
33
,
092107
(
2021
).
22.
F.
Chu
,
S.
Li
,
Z.
Hu
, and
X.
Wu
,
Appl. Phys. Lett.
122
,
160503
(
2023
).
23.
W.
Fang
,
K.
Zhang
,
Q.
Jiang
,
C.
Lv
,
C.
Sun
,
Q.
Li
,
Y.
Song
, and
X. Q.
Feng
,
Appl. Phys. Lett.
121
,
210501
(
2022
).
24.
P. R.
Gunjal
,
V. V.
Ranade
, and
R. V.
Chaudhari
,
AIChE J.
51
,
59
(
2005
).
25.
F.
Chu
,
X.
Wu
, and
L.
Wang
,
ACS Appl. Mater. Interfaces
9
,
8420
(
2017
).
26.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
,
Phys. Rev. Lett.
96
,
124501
(
2006
).
27.
Y. L.
Hung
,
M. J.
Wang
,
J. W.
Huang
, and
S. Y.
Lin
,
Exp. Therm. Fluid Sci.
48
,
102
(
2013
).
28.
L.
Chen
,
L.
Li
,
Z. G.
Li
, and
K.
Zhang
,
Langmuir
33
,
7225
(
2017
).
29.
J.
Li
and
P. B.
Weisensee
,
Exp. Therm. Fluid Sci.
130
,
110503
(
2022
).
30.
S.
Das
,
M. I.
Mohammed
,
I.
Gibson
,
L.
Weerasiri
,
A.
McDonnell
,
J.
Xiang
, and
L.
Yeo
,
Theor. Comput. Fluid Dyn.
33
,
197
(
2019
).
31.
V.
Bertola
and
M.
Wang
,
Colloids Surf., A
481
,
600
(
2015
).
32.
R.
Li
,
N.
Ashgriz
, and
S.
Chandra
,
J. Fluids Eng.
132
,
061302
(
2010
).
33.
N. D.
Patil
,
R.
Bhardwaj
, and
A.
Sharma
,
Exp. Therm. Fluid Sci.
74
,
195
(
2016
).
34.
J. M.
Kolinski
,
L.
Mahadevan
, and
S. M.
Rubinstein
,
Europhys. Lett.
108
,
24001
(
2014
).
35.
J.
De Ruiter
,
R.
Lagraauw
,
D.
van den Ende
, and
F.
Mugele
,
Nat. Phys.
11
,
48
(
2015
).
36.
M. V.
Chubynsky
,
K. I.
Belousov
,
D. A.
Lockerby
, and
J. E.
Sprittles
,
Phys. Rev. Lett.
124
,
084501
(
2020
).
37.
V.
Sanjay
,
S.
Lakshman
,
P.
Chantelot
,
J. H.
Snoeijer
, and
D.
Lohse
,
J. Fluid Mech.
958
,
A25
(
2023
).
38.
L.
Zhang
,
T.
Soori
,
A.
Rokoni
,
A.
Kaminski
, and
Y.
Sun
,
Phys. Fluids
33
,
092110
(
2021
).
39.
S.
Li
,
F.
Chu
,
J.
Zhang
,
D.
Brutin
, and
D.
Wen
,
Chem. Eng. Sci.
211
,
115252
(
2020
).
40.
J.
Zhang
,
M. K.
Borg
, and
J. M.
Reese
,
Int. J. Heat Mass Transfer
115
,
886
(
2017
).
41.
J.
Luo
,
F.
Chu
,
Z.
Ni
,
J.
Zhang
, and
D.
Wen
,
Phys. Fluids
33
,
112116
(
2021
).
42.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
,
J. Fluid Mech.
545
,
329
(
2005
).
43.
F.
Wang
and
T.
Fang
,
Phys. Rev. Fluids
5
,
033604
(
2020
).
44.
K.
Okumura
,
F.
Chevy
,
D.
Richard
,
D.
Quere
, and
C.
Clanet
,
Europhys. Lett.
62
,
237
(
2003
).
45.
H. M.
Kwon
,
A. T.
Paxson
,
K. K.
Varanasi
, and
N. A.
Patankar
,
Phys. Rev. Lett.
106
,
036102
(
2011
).
46.
H.
Zhao
,
D.
Orejon
,
K.
Sefiane
, and
M. E. R.
Shanahan
,
J. Fluid Mech.
916
,
A54
(
2021
).
47.
J. W.
Strutt
,
Proc. R. Soc. London
29
,
71
97
(
1879
).

Supplementary Material

You do not currently have access to this content.