Pancake bouncing of water droplets on superhydrophobic surfaces has been extensively studied, because the reduction in solid–liquid contact time shows great potential for self-cleaning, anti-icing, etc. However, the behavior of a pancake-bouncing droplet in the ambient air and its subsequent interaction with the underlying surface remain unrevealed, which is actually crucial for practical applications. In this Letter, we comprehensively investigate the overall dynamics of droplets on post-array superhydrophobic surfaces by extending the range of impact velocities. An unreported phenomenon was observed, whereby the retracting droplet undergoes vertical elongation and re-contacts the underlying surface following the pancake bouncing event. As the impact velocity increases, the submillimeter-scale posts notably influence the droplet splash, where tiny droplets are ejected from the edges of lateral liquid jets through the posts. Experimental results and scale analysis show that the critical Weber number for this jet splash phenomenon decreases with the post spacing and the post edge length over a certain range. The violent jet splash occurring at higher Weber numbers reduces the mass of the remaining droplet and, consequently, diminishes the diameter prior to retraction, thereby suppressing the secondary contact with the surface. Our findings are believed to provide valuable insight for the understanding and the application of the pancake bouncing effect.

1.
Q.
Tang
,
S.
Xiang
,
S.
Lin
,
Y.
Jin
,
C.
Antonini
, and
L.
Chen
, “
Enhancing droplet rebound on superhydrophobic cones
,”
Phys. Fluids
35
,
35e2101T
(
2023
).
2.
B.
Zhang
,
V.
Sanjay
,
S.
Shi
,
Y.
Zhao
,
C.
Lv
,
X.
Feng
, and
D.
Lohse
, “
Impact forces of water drops falling on superhydrophobic surfaces
,”
Phys. Rev. Lett.
129
,
104501
(
2022
).
3.
Y.
Shen
,
J.
Tao
,
H.
Tao
,
S.
Chen
,
L.
Pan
, and
T.
Wang
, “
Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces
,”
Appl. Phys. Lett.
107
,
111604
(
2015
).
4.
C.
Guo
,
J.
Sun
,
Y.
Sun
,
M.
Wang
, and
D.
Zhao
, “
Droplet impact on cross-scale cylindrical superhydrophobic surfaces
,”
Appl. Phys. Lett.
112
,
263702
(
2018
).
5.
H.
Li
,
W.
Fang
,
Z.
Zhao
,
A.
Li
,
Z.
Li
,
M.
Li
,
Q.
Li
,
X.
Feng
, and
Y.
Song
, “
Droplet precise self-splitting on patterned adhesive surfaces for simultaneous multidetection
,”
Angew. Chem. Int. Ed.
59
,
10535
10539
(
2020
).
6.
F.
Chu
,
Z.
Ni
,
D.
Wen
,
Y.
Feng
,
S.
Li
,
L.
Jiang
, and
Z.
Dong
, “
Liquid film sculpture via droplet impacting on microstructured heterowettable surfaces
,”
Adv. Funct. Mater.
32
,
2203222
(
2022
).
7.
H.
Ducloux
and
B.
Nygaard
, “
Ice loads on overhead lines due to freezing radiation fog events in plains
,”
Cold Regions Sci. Technol.
153
,
120
129
(
2018
).
8.
Z.
Zhao
,
H.
Chen
,
X.
Liu
,
H.
Liu
, and
D.
Zhang
, “
Development of high-efficient synthetic electric heating coating for anti-icing/de-icing
,”
Surf. Coat. Technol.
349
,
340
346
(
2018
).
9.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
10.
J. C.
Bird
,
R.
Dhiman
,
H.-M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
11.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
338
(
2005
).
12.
D.
Richard
,
D.
Clanet
, and
C.
Quéré
, “
Surface phenomena: Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
13.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
14.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
15.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
, “
Droplet impact on superhydrophobic surfaces: A review of recent developments
,”
J. Ind. Eng. Chem.
42
,
1
14
(
2016
).
16.
J.
Han
,
W.
Kim
,
C.
Bae
,
D.
Lee
,
S.
Shin
,
Y.
Nam
, and
C.
Lee
, “
Contact time on curved superhydrophobic surfaces
,”
Phys. Rev. E
101
,
043108
(
2020
).
17.
D.-J.
Lin
,
L.
Wang
,
X.-D.
Wang
, and
W.-M.
Yan
, “
Reduction in the contact time of impacting droplets by decorating a rectangular ridge on superhydrophobic surfaces
,”
Int. J. Heat Mass Transfer
132
,
1105
1115
(
2019
).
18.
Y.
Xu
,
L.
Tian
,
C.
Zhu
, and
N.
Zhao
, “
Reduction in the contact time of droplet impact on superhydrophobic surface with protrusions
,”
Phys. Fluids
33
,
073306
(
2021
).
19.
C.
Lv
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness
,”
Appl. Phys. Lett.
108
,
141602
(
2016
).
20.
M.
Abolghasemibizaki
and
R.
Mohammadi
, “
Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures
,”
J. Colloid Interface Sci.
509
,
422
431
(
2018
).
21.
H.
Zhang
,
X.
Yi
,
Y.
Du
,
R.
Zhang
,
X.
Zhang
,
F.
He
,
F.
Niu
, and
P.
Hao
, “
Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces
,”
Phys. Fluids
31
,
032104
(
2019
).
22.
Y.
Liu
,
L.
Moevius
,
X.
Xu
,
T.
Qian
,
J. M.
Yeomans
, and
Z.
Wang
, “
Pancake bouncing on superhydrophobic surfaces
,”
Nat. Phys.
10
,
515
519
(
2014
).
23.
M.
Khavari
,
C.
Sun
,
D.
Lohse
, and
T.
Tran
, “
Fingering patterns during droplet impact on heated surfaces
,”
Soft Matter
11
,
3298
3303
(
2015
).
24.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
25.
Q.
Liu
,
J. H. Y.
Lo
,
Y.
Li
,
Y.
Liu
,
J.
Zhao
, and
L.
Xu
, “
The role of drop shape in impact and splash
,”
Nat. Commun.
12
,
3068
(
2021
).
26.
F.
Yu
,
S.
Lin
,
J.
Yang
,
Y.
Fan
,
D.
Wang
,
L.
Chen
, and
X.
Deng
, “
Prompting splash impact on superamphiphobic surfaces by imposing a viscous part
,”
Adv. Sci.
7
,
1902687
(
2020
).
27.
H.
Li
,
A.
Li
,
Z.
Zhao
,
L.
Xue
,
M.
Li
, and
Y.
Song
, “
Precise droplet manipulation based on surface heterogeneity
,”
Accounts Mater. Res.
2
,
230
241
(
2021
).
28.
P.
Zhu
,
C.
Chen
,
K.
Nandakumar
, and
L.
Wang
, “
Nonspecular reflection of droplets
,”
Small
17
,
2006695
(
2021
).
29.
G.
Riboux
and
J. M.
Gordillo
, “
Boundary-layer effects in droplet splashing
,”
Phys. Rev. E
96
,
013105
(
2017
).
30.
E.
Vega
and
A.
Castrejón-Pita
, “
Suppressing prompt splash with polymer additives
,”
Exp. Fluids
58
,
57
(
2017
).
31.
M. A.
Quetzeri-Santiago
,
A. A.
Castrejón-Pita
, and
J. R.
Castrejón-Pita
, “
The effect of surface roughness on the contact line and splashing dynamics of impacting droplets
,”
Sci. Rep.
9
,
1
10
(
2019
).
32.
L.
Xu
, “
Liquid drop splashing on smooth, rough, and textured surfaces
,”
Phys. Rev. E
75
,
056316
(
2007
).
33.
Y.
Liu
,
G.
Whyman
,
E.
Bormashenko
,
C.
Hao
, and
Z.
Wang
, “
Controlling drop bouncing using surfaces with gradient features
,”
Appl. Phys. Lett.
107
,
051604
(
2015
).
34.
S.
Chen
,
M.
Zhu
,
Y.
Zhang
,
S.
Dong
, and
X.
Wang
, “
Magnetic-responsive superhydrophobic surface of magnetorheological elastomers mimicking from lotus leaves to rose petals
,”
Langmuir
37
,
2312
2321
(
2021
).
35.
M.
Reyssat
,
A.
Pépin
,
F.
Marty
,
Y.
Chen
, and
D.
Quéré
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
,
306
(
2006
).
36.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
(
2006
).
37.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
(
1997
).
38.
P.
Brunet
,
F.
Lapierre
,
F.
Zoueshtiagh
,
V.
Thomy
, and
A.
Merlen
, “
To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid
,”
Appl. Phys. Lett.
95
,
254102
(
2009
).
39.
R.
Zhang
,
P.
Hao
,
X.
Zhang
,
F.
Niu
, and
F.
He
, “
Tunable droplet breakup dynamics on micropillared superhydrophobic surfaces
,”
Langmuir
34
,
7942
7950
(
2018
).
40.
Y.
Liu
,
M.
Andrew
,
J.
Li
,
J. M.
Yeomans
, and
Z.
Wang
, “
Symmetry breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
10034
(
2015
).
You do not currently have access to this content.