Solving fundamental problems in engineering application can drive rapid industrial development. The solid–ice interface adhesion mechanism on anti-icing materials has attracted strong interest from researchers. In this work, the ice adhesion mechanism at the solid–ice interface was investigated based on water molecule behavior on an aluminum matrix/array graphene (M/G) surface. We counted the number of water molecules in the gaps of the array graphene structure and measured ice and array graphene of stress changes during ice removal. The multilayer array graphene structure relies on “adhesion-type” ice removal mechanism. It was attributed to the increased horizontal displacement of ice due to the stress matching of ice/array graphene. The solid-ice interface adhesion mechanism of patterned surface is understood at the molecular-scale.

1.
Y. Z.
Shen
,
X. H.
Wu
,
J.
Tao
,
C. L.
Zhu
,
Y. K.
Lai
, and
Z.
Chen
,
Prog. Mater. Sci.
103
,
509
557
(
2019
).
2.
Y.
Shen
,
S.
Liu
,
C.
Zhu
,
J.
Tao
,
Z.
Chen
, and
H.
Tao
,
Appl. Phys. Lett.
110
,
221601
(
2017
).
3.
C. J.
Zeng
,
Y. Z.
Shen
,
J.
Tao
,
H. F.
Chen
,
Z.
Wang
, and
S. Y.
Liu
,
Langmuir
38
,
937
944
(
2022
).
4.
K.
Golovin
,
A.
Dhyani
,
M. D.
Thouless
, and
A.
Tuteja
,
Science
364
,
371
375
(
2019
).
5.
D. M.
Anderson
,
Nature
216
,
563
566
(
1967
).
6.
P.
Irajizad
,
M.
Hasnain
,
N.
Farokhnia
,
S. M.
Sajadi
, and
H.
Ghasemi
,
Nat. Commun.
7
,
13395
(
2016
).
7.
M. J.
Kreder
,
J.
Alvarenga
,
P.
Kim
, and
J.
Aizenberg
,
Nat. Rev. Mater.
1
,
1
15
(
2016
).
8.
H. Y.
Xiang
,
Y.
Yuan
,
C.
Zhang
,
X.
Dai
,
T.
Zhu
, and
L. B.
Song
,
ACS Appl. Mater. Interfaces
15
,
3599
3612
(
2023
).
9.
P.
Hao
,
C.
Lv
, and
X.
Zhang
,
Appl. Phys. Lett.
104
,
161609
(
2014
).
10.
H.
Gao
,
Y.
Liu
,
G.
Wang
,
S.
Li
,
Z.
Han
, and
L.
Ren
,
Chem. Eng. J.
415
,
128862
(
2021
).
11.
A. K.
Metya
and
J. K.
Singh
,
Mol. Simul.
45
,
394
402
(
2019
).
12.
S.
Xiao
,
B. H.
Skallerud
,
F.
Wang
,
Z.
Zhang
, and
J.
He
,
Nanoscale
11
,
16262
16269
(
2019
).
13.
G.
Bai
,
D.
Gao
,
Z.
Liu
,
X.
Zhou
, and
J.
Wang
,
Nature
576
,
437
441
(
2019
).
14.
Z.
Li
,
Z.
Zhen
,
M.
Chai
,
X.
Zhao
,
Y.
Zhong
, and
H.
Zhu
,
Small
16
,
1905945
(
2020
).
15.
M.
Perez
,
Scr. Mater.
52
,
709
712
(
2005
).
16.
T.
Wu
and
Y. Z.
Chen
,
Heat Mass Transfer
39
,
665
674
(
2003
).
17.
G.
Bai
,
Z.
Song
,
H.
Geng
,
D.
Gao
,
L.
Guo
, and
J.
Wang
,
Adv. Mater.
29
,
1606843
(
2017
).
18.
H.
Geng
,
X.
Liu
,
G.
Shi
,
G.
Bai
,
J.
Ma
, and
J.
Wang
,
Angew. Chem., Int. Ed. Engl.
56
,
997
1001
(
2017
).
19.
K. R.
Hadley
and
C.
McCabe
,
Mol. Simul.
38
,
671
681
(
2012
).
20.
H.
Niu
,
Y. I.
Yang
, and
M.
Parrinello
,
Phys. Rev. Lett.
122
,
245501
(
2019
).
21.
I. A.
Ribeiro
and
M.
Koning
,
J. Phys. Chem. C
125
,
627
634
(
2021
).
22.
K. L.
Mittal
and
C. H.
Choi
,
Ice Adhesion: Mechanism, Measurement and Mitigation
,
1st ed
. (
Wiley
,
New York, NY
,
2020
), pp.
217
280
.
23.
X.
Tan
,
D.
Zhu
,
Z.
Shi
, and
X.
Zhang
,
Ceram. Int.
46
,
13925
13931
(
2020
).
24.
Q.
He
,
Y.
Ma
,
X.
Wang
,
Y.
Jia
,
K.
Li
, and
A.
Li
,
ACS Appl. Polym. Mater.
7
,
4729
4737
(
2023
).
25.
Z.
Tian
,
L.
Wang
,
D.
Zhu
,
C.
Chen
,
H.
Zhao
,
R.
Peng
,
H.
Zhang
,
P.
Fan
, and
M.
Zhong
,
ACS Appl. Mater. Interfaces
15
,
6013
6024
(
2023
).
27.
Z.
Shi
,
H.
Zeng
,
Y.
Yuan
,
N.
Shi
,
L.
Wen
,
H.
Rong
,
D.
Zhu
,
L.
Hu
,
L.
Ji
,
L.
Zhao
, and
X.
Zhang
,
Adv. Funct. Mater.
33
,
2213042
(
2023
).
28.
B.
Weber
,
Y.
Nagata
,
S.
Ketzetzi
,
F.
Tang
,
W. J.
Smit
,
H. J.
Bakker
,
E. H. G.
Backus
,
M.
Bonn
, and
D.
Bonn
,
J. Phys. Chem. Lett.
9
,
2838
2842
(
2018
).
29.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
,
Mater. Trans.
48
,
2923
2927
(
2007
).

Supplementary Material

You do not currently have access to this content.