Surface conditions of flexible electronic devices can affect their accuracy, so it is necessary to keep surfaces clean and stable to ensure their correct-long-term operation. The Nepenthes-inspired slippery surface has excellent self-cleaning, stability, and self-healing properties. A slippery surface with stretching durability is significant for application to a flexible sensors surface. As an advanced micro-nanomanufacturing method, femtosecond laser has become an effective method for preparing porous structures to process a slippery surface. In this study, a femtosecond laser was used to prepare an interconnected porous structure on pre-stretched polydimethylsiloxane in one step. The slippery surface was prepared after being infused with lubricant, which maintained the slippery performance under tensile conditions and after hundreds of stretch cycles. Moreover, it exhibits remarkable self-cleaning and chemical stability. This stretchable slippery surface prepared by femtosecond laser direct writing presents good prospects for flexible electronic devices that require a stable surface in various extreme environmental applications.

1.
M. M.
Rodgers
,
V. M.
Pai
, and
R. S.
Conroy
, “
Recent advances in wearable sensors for health monitoring
,”
IEEE Sens. J.
15
(
6
),
3119
3126
(
2015
).
2.
S. J.
Kim
,
K.
Choi
,
B.
Lee
,
Y.
Kim
, and
B. H.
Hong
, “
Materials for flexible, stretchable electronics: graphene and 2D materials
,”
Annu. Rev. Mater. Res.
45
(
1
),
63
84
(
2015
).
3.
C.
Zhang
,
Z.
Li
,
H.
Li
,
Q.
Yang
,
H.
Wang
,
C.
Shan
,
J.
Zhang
,
X.
Hou
, and
F.
Chen
, “
Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor
,”
ACS Appl. Mater. Interfaces
14
(
33
),
38328
38338
(
2022
).
4.
M. A.
Samaha
and
M.
Gad-el-Hak
, “
Slippery surfaces: A decade of progress
,”
Phys. Fluids
33
(
7
),
071301
(
2021
).
5.
F.
Chen
,
Y.
Wang
,
Y.
Tian
,
D.
Zhang
,
J.
Song
,
C. R.
Crick
,
C. J.
Carmalt
,
I. P.
Parkin
, and
Y.
Lu
, “
Robust and durable liquid-repellent surfaces
,”
Chem. Soc. Rev.
51
(
20
),
8476
8583
(
2022
).
6.
Y.
Wang
,
J.
Meng
, and
S.
Wang
, “
Recent progress of bioinspired scalephobic surfaces with specific barrier layers
,”
Langmuir
37
(
29
),
8639
8657
(
2021
).
7.
W.
Yan
,
S.
Xue
,
B.
Xiang
,
X.
Zhao
,
W.
Zhang
,
P.
Mu
, and
J.
Li
, “
Recent advances of slippery liquid-infused porous surfaces with anti-corrosion
,”
Chem. Commun.
59
,
2182
(
2023
).
8.
W.
Yao
,
L.
Wu
,
L.
Sun
,
B.
Jiang
, and
F.
Pan
, “
Recent developments in slippery liquid-infused porous surface
,”
Prog. Organic Coat.
166
,
106806
(
2022
).
9.
L.
Chen
,
S.
Huang
,
R. H. A.
Ras
, and
X.
Tian
, “
Omniphobic liquid-like surfaces
,”
Nat. Rev. Chem.
7
(
2
),
123
137
(
2023
).
10.
H.
Xiang
,
Y.
Yuan
,
C.
Zhang
,
X.
Dai
,
T.
Zhu
,
L.
Song
,
Y.
Gai
, and
R.
Liao
, “
Key factors affecting durable anti-icing of slippery surfaces: Pore size and porosity
,”
ACS Appl. Mater. Interfaces
15
(
2
),
3599
3612
(
2023
).
11.
L.
Hao
,
R.
Jiang
,
J.
Gao
,
J.
Xu
,
L.
Tian
,
X.
Zhang
,
S.
Zhou
,
J.
Zhao
, and
L.
Ren
, “
Metal-organic framework (MOF)-based slippery liquid-infused porous surface (SLIPS) for purely physical antibacterial applications
,”
Appl. Mater. Today
27
,
101430
(
2022
).
12.
C.
Sung
and
Y.
Heo
, “
Porous layer-by-layer films assembled using polyelectrolyte blend to control wetting properties
,”
Polymers
13
(
13
),
2116
(
2021
).
13.
H.
Tran
,
Y.
Kim
,
C.
Ternon
,
M.
Langlet
,
D.
Riassetto
, and
D.
Lee
, “
Lubricant depletion‐resistant slippery liquid‐infused porous surfaces via capillary rise lubrication of nanowire array
,”
Adv. Mater. Interfaces
8
(
7
),
2002058
(
2021
).
14.
Y.
Fang
,
J.
Yong
,
Y.
Cheng
,
Q.
Yang
,
X.
Hou
, and
F.
Chen
, “
Liquid‐infused slippery stainless steel surface prepared by alcohol‐assisted femtosecond laser ablation
,”
Adv. Mater. Interfaces
8
(
5
),
2001334
(
2021
).
15.
Q.
Yang
,
Y.
Cheng
,
Z.
Fang
,
J.
Zhang
,
X.
Hou
, and
F.
Chen
, “
The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing
,”
Opto-Electron. Eng.
49
(
1
),
210326
(
2022
).
16.
P.
Zhang
,
H.
Chen
,
L.
Zhang
,
Y.
Zhang
,
D.
Zhang
, and
L.
Jiang
, “
Stable slippery liquid-infused anti-wetting surface at high temperatures
,”
J. Mater. Chem. A
4
(
31
),
12212
12220
(
2016
).
17.
M.
Yu
,
M.
Liu
,
Y.
Hou
,
S.
Fu
,
L.
Zhang
,
M.
Li
, and
D.
Wang
, “
Covalently grafted liquids for transparent and omniphobic surfaces via thiol-ene click chemistry
,”
J. Mater. Sci.
55
(
27
),
12811
12825
(
2020
).
18.
P.
Che
,
X.
Han
,
P.
Guo
,
X.
Wang
,
S.
Cheng
,
K.
Han
,
L.
Jiang
, and
L.
Heng
, “
Robust yet flexible slippery layered composite surfaces with a programmable pressure-resistance response under extreme environmental conditions
,”
J. Mater. Chem. A
10
(
28
),
14933
14942
(
2022
).
19.
Y.
Wang
,
B.
Qian
,
C.
Lai
,
X.
Wang
,
K.
Ma
,
Y.
Guo
,
X.
Zhu
,
B.
Fei
, and
J. H.
Xin
, “
Flexible slippery surface to manipulate droplet coalescence and sliding, and its practicability in wind-resistant water collection
,”
ACS Appl. Mater. Interfaces
9
(
29
),
24428
24432
(
2017
).
20.
J.
Yong
,
Q.
Yang
,
X.
Hou
, and
F.
Chen
, “
Nature-inspired superwettability achieved by femtosecond lasers
,”
Ultrafast Sci.
2022
,
9895418
.
21.
M.
Li
,
T.
Yang
,
Q.
Yang
,
Z.
Fang
,
H.
Bian
,
C.
Zhang
,
X.
Hou
, and
F.
Chen
, “
Bioinspired anti‐fogging and anti‐fouling artificial compound eyes
,”
Adv. Opt. Mater.
10
(
17
),
2200861
(
2022
).
22.
X.
Bai
,
X.
Gou
,
J.
Zhang
,
J.
Liang
,
L.
Yang
,
S.
Wang
,
X.
Hou
, and
F.
Chen
, “
A review of smart superwetting surfaces based on shape‐memory micro/nanostructures
,”
Small
19
(
15
),
2206463
(
2023
).
23.
J.
Yong
,
F.
Chen
,
Q.
Yang
,
D.
Zhang
,
G.
Du
,
J.
Si
,
F.
Yun
, and
X.
Hou
, “
Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion
,”
J. Phys. Chem. C
117
(
47
),
24907
24912
(
2013
).
24.
J.
Yong
,
F.
Chen
,
Q.
Yang
,
U.
Farooq
,
H.
Bian
,
G.
Du
, and
X.
Hou
, “
Controllable underwater anisotropic oil-wetting
,”
Appl. Phys. Lett.
105
(
7
),
071608
(
2014
).
25.
F.
Chen
,
D.
Zhang
,
Q.
Yang
,
J.
Yong
,
G.
Du
,
J.
Si
,
F.
Yun
, and
X.
Hou
, “
Bioinspired wetting surface via laser microfabrication
,”
ACS Appl. Mater. Interfaces
5
(
15
),
6777
6792
(
2013
).
26.
A.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
(
1
),
546
551
(
1944
).
27.
J.
Yong
,
F.
Chen
,
Q.
Yang
,
J.
Huo
, and
X.
Hou
, “
Superoleophobic surfaces
,”
Chem. Soc. Rev.
46
(
14
),
4168
4217
(
2017
).
28.
J.
Yong
,
F.
Chen
,
M.
Li
,
Q.
Yang
,
Y.
Fang
,
J.
Huo
, and
X.
Hou
, “
Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces
,”
J. Mater. Chem. A
5
(
48
),
25249
25257
(
2017
).
29.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
(
7365
),
443
447
(
2011
).
30.
Y.
Fang
,
J.
Yong
,
J.
Huo
,
Q.
Yang
,
Y.
Cheng
,
J.
Liang
, and
F.
Chen
, “
Bioinspired slippery surface fabricated by femtosecond laser and its applications
,”
Laser Optoelectron. Prog.
57
(
11
),
111413
(
2020
).
You do not currently have access to this content.