Micro and nanostructures can delay frost and ice buildup, improve defrosting efficiency, and reduce water retention. Here, we examine the impact of nanostructures on aluminum evaporators during frosting and defrosting inside of a 20.5 ft3 commercial food refrigerator. We use scalable manufacturing methods to generate structures on the external surfaces of the heat exchangers using bohemitization and chemical vapor deposition, rendering them superhydrophilic or superhydrophobic. Our results demonstrate a 93% reduction in water retention for the superhydrophobic heat exchanger compared to its uncoated and superhydrophilic counterparts. We conduct frosting and defrosting visualization experiments in the refrigerator to show frost pattern growth and droplet distributions on the heat exchangers. Frost was fluffier and less dense on the superhydrophobic heat exchanger compared to its counterparts which resulted in sparse droplets that are easily removed during defrosting. Furthermore, we show that the superhydrophobic heat exchanger can decrease energy consumption by 13.6% during defrosting when compared to its uncoated and superhydrophilic counterparts. We also comment on the durability of the applied coating on the heat exchangers. This study provides guidelines for the broader integration of micro and nanostructured surfaces with refrigeration and cooling appliances to create energy savings.

1.
A.
De Almeida
,
P.
Fonseca
,
B.
Schlomann
, and
N.
Feilberg
, “
Characterization of the household electricity consumption in the EU, potential energy savings and specific policy recommendations
,”
Energy Build.
43
(
8
),
1884
1894
(
2011
).
2.
T.
Mahlia
,
H. H.
Masjuki
,
R.
Saidur
, and
M.
Amalina
, “
Cost–benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia
,”
Energy Policy
32
(
16
),
1819
1824
(
2004
).
3.
J. R.
Barbosa
, Jr
,
C.
Melo
,
C. J.
Hermes
, and
P. J.
Waltrich
, “
A study of the air-side heat transfer and pressure drop characteristics of tube-fin ‘no-frost’ evaporators
,”
Appl. Energy
86
(
9
),
1484
1491
(
2009
).
4.
C.
Melo
,
F. T.
Knabben
, and
P. V.
Pereira
, “
An experimental study on defrost heaters applied to frost-free household refrigerators
,”
Appl. Therm. Eng.
51
(
1–2
),
239
245
(
2013
).
5.
D. L.
Da Silva
,
C. J.
Hermes
, and
C.
Melo
, “
Experimental study of frost accumulation on fan-supplied tube-fin evaporators
,”
Appl. Therm. Eng.
31
(
6–7
),
1013
1020
(
2011
).
6.
J.
Wu
,
G.
Ouyang
,
P.
Hou
, and
H.
Xiao
, “
Experimental investigation of frost formation on a parallel flow evaporator
,”
Appl. Energy
88
(
5
),
1549
1556
(
2011
).
7.
A. B.
Olcay
,
P.
Avci
,
E.
Bayrak
,
A. S.
Dalkılıç
, and
S.
Wongwises
, “
Experimental investigation of frost issue on various evaporators having different fin types
,”
Int. Commun. Heat Mass Transfer
86
,
190
198
(
2017
).
8.
A. S.
Pegallapati
and
M.
Ramgopal
, “
Effect of heat transfer area distribution on frosting performance of refrigerator evaporator
,”
Int. J. Heat Mass Transfer
175
,
121317
(
2021
).
9.
X.-M.
Guo
,
Y.-G.
Chen
,
W.-H.
Wang
, and
C.-Z.
Chen
, “
Experimental study on frost growth and dynamic performance of air source heat pump system
,”
Appl. Therm. Eng.
28
(
17–18
),
2267
2278
(
2008
).
10.
A. J.
Mahvi
,
K.
Boyina
,
A.
Musser
,
S.
Elbel
, and
N.
Miljkovic
, “
Superhydrophobic heat exchangers delay frost formation and enhance efficiency of electric vehicle heat pumps
,”
Int. J. Heat Mass Transfer
172
,
121162
(
2021
).
11.
R.
Rite
and
R.
Crawford
, “
The effect of frost accumulation on the performance of domestic refrigerator-freezer finned-tube evaporator coils
,”
ASHRAE Trans.
97
(
2
),
428
437
(
1991
).
12.
D. L.
da Silva
,
C.
Melo
, and
C. J.
Hermes
, “
Effect of frost morphology on the thermal-hydraulic performance of fan-supplied tube-fin evaporators
,”
Appl. Therm. Eng.
111
,
1060
1068
(
2017
).
13.
W. F.
Stoecker
, “
How frost formation on coils affects refrigeration systems
,”
Refrig. Eng.
65
,
42
(
1957
).
14.
K. D.
Esmeryan
,
A. H.
Bressler
,
C. E.
Castano
,
C. P.
Fergusson
, and
R.
Mohammadi
, “
Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings
,”
Appl. Surf. Sci.
390
,
452
460
(
2016
).
15.
M. S.
Patil
,
J.-H.
Seo
, and
M.-Y.
Lee
, “
Heat transfer characteristics of the heat exchangers for refrigeration, air conditioning and heat pump systems under frosting, defrosting and dry/wet conditions—A review
,”
Appl. Therm. Eng.
113
,
1071
1087
(
2017
).
16.
W.
Stoecker
, “
Selecting the size of pipes carrying hot gas to defrost evaporators
,”
Int. J. Refrig.
7
(
4
),
225
228
(
1984
).
17.
D. H.
Niederer
, “
Frosting and defrosting effects on coil heat transfer
,”
ASHRAE Trans.
82
(
1
),
467
473
(
1976
).
18.
H.
Cho
,
Y.
Kim
, and
I.
Jang
, “
Performance of a showcase refrigeration system with multi-evaporator during on–off cycling and hot-gas bypass defrost
,”
Energy
30
(
10
),
1915
1930
(
2005
).
19.
J.-S.
Byun
,
J.
Lee
, and
C.-D.
Jeon
, “
Frost retardation of an air-source heat pump by the hot gas bypass method
,”
Int. J. Refrig.
31
(
2
),
328
334
(
2008
).
20.
Q.
Minglu
,
X.
Liang
,
S.
Deng
, and
J.
Yiqiang
, “
Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps
,”
Build. Environ.
45
(
11
),
2354
2361
(
2010
).
21.
J.
Dong
,
S.
Deng
,
Y.
Jiang
,
L.
Xia
, and
Y.
Yao
, “
An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump
,”
Appl. Therm. Eng.
37
,
380
387
(
2012
).
22.
S.
Jhee
,
K.-S.
Lee
, and
W.-S.
Kim
, “
Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger
,”
Int. J. Refrig.
25
(
8
),
1047
1053
(
2002
).
23.
A.
Sommers
and
A.
Jacobi
, “
Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation
,”
Int. J. Refrig.
28
(
7
),
1006
1017
(
2005
).
24.
M.
Amer
and
C.-C.
Wang
, “
Review of defrosting methods
,”
Renewable Sustainable Energy Rev.
73
,
53
74
(
2017
).
25.
K.-S.
Lee
and
W.-S.
Kim
, “
The effects of design and operating factors on the frost growth and thermal performance of a flat plate fin-tube heat exchanger under the frosting condition
,”
KSME Int. J.
13
,
973
981
(
1999
).
26.
W.-M.
Yan
,
H.-Y.
Li
, and
Y.-L.
Tsay
, “
Thermofluid characteristics of frosted finned-tube heat exchangers
,”
Int. J. Heat Mass Transfer
48
(
15
),
3073
3080
(
2005
).
27.
B.
Na
and
R. L.
Webb
, “
A fundamental understanding of factors affecting frost nucleation
,”
Int. J. Heat Mass Transfer
46
(
20
),
3797
3808
(
2003
).
28.
S.
Kondepudi
and
D.
O'Neal
, “
Effect of frost growth on the performance of louvered finned tube heat exchangers
,”
Int. J. Refrig.
12
(
3
),
151
158
(
1989
).
29.
K.-S.
Lee
,
W.-S.
Kim
, and
T.-H.
Lee
, “
A one-dimensional model for frost formation on a cold flat surface
,”
Int. J. Heat Mass Transfer
40
(
18
),
4359
4365
(
1997
).
30.
E.
Moallem
,
L.
Cremaschi
,
D. E.
Fisher
, and
S.
Padhmanabhan
, “
Experimental measurements of the surface coating and water retention effects on frosting performance of microchannel heat exchangers for heat pump systems
,”
Exp. Therm. Fluid Sci.
39
,
176
188
(
2012
).
31.
Y.
Xia
,
Y.
Zhong
,
P.
Hrnjak
, and
A.
Jacobi
, “
Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers
,”
Int. J. Refrig.
29
(
7
),
1066
1079
(
2006
).
32.
J.
Westhaeuser
,
L.
Brauchle
,
J.-C.
Albrecht
,
W.
Tegethoff
,
N.
Lemke
, and
J.
Koehler
, “
Flat tube heat exchangers: Experimental analysis of frosting and water retention
,”
Appl. Therm. Eng.
218
,
119319
(
2023
).
33.
L.
Li
,
W.
Wang
,
Y.
Sun
,
Y.
Feng
,
W.
Lu
,
J.
Zhu
, and
Y.
Ge
, “
Investigation of defrosting water retention on the surface of evaporator impacting the performance of air source heat pump during periodic frosting–defrosting cycles
,”
Appl. Energy
135
,
98
107
(
2014
).
34.
Z.
Liu
,
Y.
Gou
,
J.
Wang
, and
S.
Cheng
, “
Frost formation on a super-hydrophobic surface under natural convection conditions
,”
Int. J. Heat Mass Transfer
51
(
25–26
),
5975
5982
(
2008
).
35.
H.
Wang
,
L.
Tang
,
X.
Wu
,
W.
Dai
, and
Y.
Qiu
, “
Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate
,”
Appl. Surf. Sci.
253
(
22
),
8818
8824
(
2007
).
36.
Z.-J.
Wang
,
D.-J.
Kwon
,
K. L.
DeVries
, and
J.-M.
Park
, “
Frost formation and anti-icing performance of a hydrophobic coating on aluminum
,”
Exp. Therm. Fluid Sci.
60
,
132
137
(
2015
).
37.
C.-C.
Wang
and
C.-T.
Chang
, “
Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating
,”
Int. J. Heat Mass Transfer
41
(
20
),
3109
3120
(
1998
).
38.
T.
Darmanin
and
F.
Guittard
, “
Wettability of conducting polymers: From superhydrophilicity to superoleophobicity
,”
Prog. Polym. Sci.
39
(
4
),
656
682
(
2014
).
39.
K. S.
Boyina
,
A. J.
Mahvi
,
S.
Chavan
,
D.
Park
,
K.
Kumar
,
M.
Lira
,
Y.
Yu
,
A. A.
Gunay
,
X.
Wang
, and
N.
Miljkovic
, “
Condensation frosting on meter-scale superhydrophobic and superhydrophilic heat exchangers
,”
Int. J. Heat Mass Transfer
145
,
118694
(
2019
).
40.
J.
Koszut
,
K.
Boyina
,
G.
Popovic
,
J.
Carpenter
,
S.
Wang
, and
N.
Miljkovic
, “
Superhydrophobic heat exchangers delay frost formation and reduce defrost energy input of aircraft environmental control systems
,”
Int. J. Heat Mass Transfer
189
,
122669
(
2022
).
41.
N. V.
Upot
,
K.
Fazle Rabbi
,
A.
Bakhshi
,
J.
Kohler Mendizabal
,
A. M.
Jacobi
, and
N.
Miljkovic
, “
Etching-enabled ultra-scalable micro and nanosculpturing of metal surfaces for enhanced thermal performance
,”
Appl. Phys. Lett.
122
(
3
),
031603
(
2023
).
42.
H.
Cha
,
J.
Ma
,
Y. S.
Kim
,
L.
Li
,
L.
Sun
,
J.
Tong
, and
N.
Miljkovic
, “
In situ droplet microgoniometry using optical microscopy
,”
ACS Nano
13
(
11
),
13343
13353
(
2019
).
43.
J. M.
Corberán
,
J.
Segurado
,
D.
Colbourne
, and
J.
Gonzálvez
, “
Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment
,”
Int. J. Refrig.
31
(
4
),
748
756
(
2008
).
44.
A. D.
Sommers
,
N. L.
Truster
,
A. C.
Napora
,
A. C.
Riechman
, and
E. J.
Caraballo
, “
Densification of frost on hydrophilic and hydrophobic substrates—Examining the effect of surface wettability
,”
Exp. Therm. Fluid Sci.
75
,
25
34
(
2016
).
45.
L.
Pu
,
R.
Liu
,
H.
Huang
,
S.
Zhang
,
Z.
Qi
,
W.
Xu
, and
J.
Zhou
, “
Experimental study of cyclic frosting and defrosting on microchannel heat exchangers with different coatings
,”
Energy Build.
226
,
110382
(
2020
).
46.
F.
Li
,
S.
Wu
,
Z.
Ma
,
R.
Zhao
, and
D.
Huang
, “
Effect of surface coating on defrosting water drainage characteristics of vertical-fin microchannel frosting evaporator
,”
Appl. Therm. Eng.
208
,
118220
(
2022
).
47.
J.
Ma
,
H.
Cha
,
M. K.
Kim
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced delamination of nanoscale hydrophobic films
,”
Adv. Funct. Mater.
29
(
43
),
1905222
(
2019
).
48.
H.
Cha
,
A.
Wu
,
M. K.
Kim
,
K.
Saigusa
,
A.
Liu
, and
N.
Miljkovic
, “
Nanoscale-agglomerate-mediated heterogeneous nucleation
,”
Nano Lett.
17
(
12
),
7544
7551
(
2017
).
49.
M. J.
Hoque
,
X.
Yan
,
H.
Qiu
,
Y.
Qin
,
X.
Du
,
J.
Stermer
, and
N.
Miljkovic
, “
Durability and degradation mechanisms of antifrosting surfaces
,”
ACS Appl. Mater. Interfaces
15
(
10
),
13711
13723
(
2023
).

Supplementary Material

You do not currently have access to this content.