We introduce a durable hybrid substrate consisting of superhydrophilic micropillars surrounded by superhydrophobic depressions for practical industrial applications. The proposed surface can be mass-produced via a facile and affordable method. Moreover, the stability tests show that the wettability properties of fabricated surfaces do not vary after the imposition of hot steam flow for 110 h. Two hybrid samples with different patterns of micropillars are compared with superhydrophobic and bare aluminum samples to explore the physics behind the condensation improvement ability of hybrid surfaces. The results reveal that the heat transfer coefficient and heat flux can be significantly increased with the incorporation of micropillars with optimized dimensions. Among the tested surfaces, the hybrid one, whose pillar's diameters are 500 μm, increases the heat transfer coefficient by 33.50% and 19.60% with respect to the superhydrophobic and bare surfaces, respectively, at a subcooling temperature of 18.50 °C.

1.
H. J.
Cho
,
D. J.
Preston
,
Y.
Zhu
, and
E. N.
Wang
,
Nat. Rev. Mater.
2
,
16092
(
2016
).
2.
K.-C.
Park
,
P.
Kim
,
A.
Grinthal
,
N.
He
,
D.
Fox
,
J. C.
Weaver
, and
J.
Aizenberg
,
Nature
531
,
78
(
2016
).
3.
Y.
Zheng
,
H.
Bai
,
Z.
Huang
,
X.
Tian
,
F.-Q.
Nie
,
Y.
Zhao
,
J.
Zhai
, and
L.
Jiang
,
Nature
463
,
640
(
2010
).
4.
J.
Bao
,
Y.
Lin
,
R.
Zhang
,
N.
Zhang
, and
G.
He
,
Energy Convers. Manag.
143
,
312
(
2017
).
5.
H.
Jin
,
G.
Lin
,
L.
Bai
,
A.
Zeiny
, and
D.
Wen
,
Nano Energy
28
,
397
(
2016
).
6.
T.
Humplik
,
J.
Lee
,
S. C.
O'hern
,
B. A.
Fellman
,
M. A.
Baig
,
S. F.
Hassan
,
M. A.
Atieh
,
F.
Rahman
,
T.
Laoui
, and
R.
Karnik
,
Nanotechnology
22
,
292001
(
2011
).
7.
X.
Li
,
X.
Min
,
J.
Li
,
N.
Xu
,
P.
Zhu
,
B.
Zhu
,
S.
Zhu
, and
J.
Zhu
,
Joule
2
,
2477
(
2018
).
8.
Y.
Wang
,
L.
Zhang
,
J.
Wu
,
M. N.
Hedhili
, and
P.
Wang
,
J. Mater. Chem. A
3
,
18963
(
2015
).
9.
Z.
Yu
,
F. F.
Yun
,
Y.
Wang
,
L.
Yao
,
S.
Dou
,
K.
Liu
,
L.
Jiang
, and
X.
Wang
,
Small
13
,
1701403
(
2017
).
10.
J.
Zhu
,
Y.
Luo
,
J.
Tian
,
J.
Li
, and
X.
Gao
,
ACS Appl. Mater. Interfaces
7
,
10660
(
2015
).
11.
J.
Ma
,
S.
Sett
,
H.
Cha
,
X.
Yan
, and
N.
Miljkovic
,
Appl. Phys. Lett.
116
,
260501
(
2020
).
12.
E.
Schmidt
,
W.
Schurig
, and
W.
Sellschopp
,
Tech. Mech. Und Thermodyn.
1
,
53
(
1930
).
13.
S.-M.
Kim
and
I.
Mudawar
,
Int. J. Heat Mass Transf.
55
,
984
(
2012
).
14.
A. T.
Paxson
,
J. L.
Yagüe
,
K. K.
Gleason
, and
K. K.
Varanasi
,
Adv. Mater.
26
,
418
(
2014
).
15.
M.
He
,
Y.
Ding
,
J.
Chen
, and
Y.
Song
,
ACS Nano
10
,
9456
(
2016
).
16.
R.
Wen
,
S.
Xu
,
X.
Ma
,
Y.-C.
Lee
, and
R.
Yang
,
Joule
2
,
269
(
2018
).
17.
M.-C.
Lu
,
C.-C.
Lin
,
C.-W.
Lo
,
C.-W.
Huang
, and
C.-C.
Wang
,
Int. J. Heat Mass Transf.
111
,
614
(
2017
).
18.
S.
Chen
,
R.
Wang
,
F.
Wu
,
H.
Zhang
,
X.
Gao
, and
L.
Jiang
,
Mater. Today Phys.
19
,
100407
(
2021
).
19.
R.
Wen
,
S.
Xu
,
D.
Zhao
,
Y.-C.
Lee
,
X.
Ma
, and
R.
Yang
,
ACS Appl. Mater. Interfaces
9
,
44911
(
2017
).
20.
Q.
Peng
,
L.
Jia
,
C.
Dang
,
Z.
An
,
Y.
Zhang
, and
L.
Yin
,
Int. J. Heat Mass Transf.
130
,
1096
(
2019
).
21.
R.
Wen
,
Q.
Li
,
J.
Wu
,
G.
Wu
,
W.
Wang
,
Y.
Chen
,
X.
Ma
,
D.
Zhao
, and
R.
Yang
,
Nano Energy
33
,
177
(
2017
).
22.
A. M.
Macner
,
S.
Daniel
, and
P. H.
Steen
,
Langmuir
30
,
1788
(
2014
).
23.
X.
Chen
,
J.
Wu
,
R.
Ma
,
M.
Hua
,
N.
Koratkar
,
S.
Yao
, and
Z.
Wang
,
Adv. Funct. Mater.
21
,
4617
(
2011
).
24.
Y.
Hou
,
M.
Yu
,
X.
Chen
,
Z.
Wang
, and
S.
Yao
,
ACS Nano
9
,
71
(
2015
).
25.
T.
Nørgaard
and
M.
Dacke
,
Front. Zool.
7
,
23
(
2010
).
26.
B.
Mondal
,
M.
Mac Giolla Eain
,
Q.
Xu
,
V. M.
Egan
,
J.
Punch
, and
A. M.
Lyons
,
ACS Appl. Mater. Interfaces
7
,
23575
(
2015
).
27.
C.-W.
Lo
,
Y.-C.
Chu
,
M.-H.
Yen
, and
M.-C.
Lu
,
Joule
3
,
2806
(
2019
).
28.
K.
Egab
,
M.
Alwazzan
,
B.
Peng
,
S. K.
Oudah
,
Z.
Guo
,
X.
Dai
,
J.
Khan
, and
C.
Li
,
Int. J. Heat Mass Transf.
154
,
119640
(
2020
).
29.
Z.
Song
,
M.
Lu
, and
X.
Chen
,
ACS Omega
5
,
23588
(
2020
).
30.
X.
Ji
,
D.
Zhou
,
C.
Dai
, and
J.
Xu
,
Int. J. Heat Mass Transf.
132
,
52
(
2019
).
31.
B.
Peng
,
X.
Ma
,
Z.
Lan
,
W.
Xu
, and
R.
Wen
,
Int. J. Heat Mass Transf.
77
,
785
(
2014
).
32.
B.
Peng
,
X.
Ma
,
Z.
Lan
,
W.
Xu
, and
R.
Wen
,
Int. J. Heat Mass Transf.
83
,
27
(
2015
).
33.
M.
Alwazzan
,
K.
Egab
,
B.
Peng
, and
J.
Khan
,
Int. J. Heat Mass Transf.
112
,
950
(
2017
).
34.
L.
Stendardo
,
A.
Milionis
,
G.
Kokkoris
,
C.
Stamatopoulos
,
C. S.
Sharma
,
R.
Kumar
,
M.
Donati
, and
D.
Poulikakos
,
Langmuir
39
,
1585
(
2023
).
35.
M. M.
Chehrghani
,
T.
Abbasiasl
,
A. K.
Sadaghiani
, and
A.
Koşar
,
Langmuir
37
,
13567
(
2021
).
36.
K. L.
Wilke
,
D. S.
Antao
,
S.
Cruz
,
R.
Iwata
,
Y.
Zhao
,
A.
Leroy
,
D. J.
Preston
, and
E. N.
Wang
,
ACS Nano
14
,
14878
(
2020
).
37.
W.
Zhang
,
W.
Ding
,
M.
Fernandino
, and
C. A.
Dorao
,
ACS Appl. Nano Mater.
2
,
7696
(
2019
).
38.
A.
Ghosh
,
S.
Beaini
,
B. J.
Zhang
,
R.
Ganguly
, and
C. M.
Megaridis
,
Langmuir
30
,
13103
(
2014
).
39.
B.
Rezaee
,
M.
Mahlouji Taheri
,
H.
Pakzad
,
M.
Fakhri
,
A.
Moosavi
, and
M.
Aryanpour
,
Langmuir
39
,
8354
(
2023
).
40.
E. V.
Chulkova
,
K. A.
Emelyanenko
,
A. M.
Emelyanenko
, and
L. B.
Boinovich
,
Surf. Innov.
10
,
21
(
2022
).
41.
R. S.
Subramanian
,
N.
Moumen
, and
J. B.
McLaughlin
,
Langmuir
21
,
11844
(
2005
).

Supplementary Material

You do not currently have access to this content.