Free-space Brillouin lasers (BLs) generate high-power narrow-linewidth laser outputs at specific wavelengths. However, despite these impressive results, further compressing the Stokes linewidth while maintaining a high-power output remains a challenge. This study was conducted to investigate the design of BLs, starting from the phase-matching conditions and stability of a Brillouin cavity, for media with different phonon frequencies. A high-power and narrow-linewidth output can be realized using large-size, wide-gain-bandwidth Brillouin media. We experimentally demonstrated a BL using fused silica and diamond with the same cavity parameters. Stokes powers of 21.6 and 18.9 W were obtained with fused silica and diamond, respectively, at an available pump power of 58 W. Using fused silica, a Stokes linewidth of 1.2 kHz was obtained, which is two times narrower than that obtained using the diamond BL. Such BL design routes for various Brillouin media provide a path for achieving high-power, ultra-narrow-linewidth laser radiation at specific wavelengths.

1.
J.
Aasi
,
B.
Abbott
,
R.
Abbott
et al, “
Advanced LIGO
,”
Classical Quantum Gravity
32
,
074001
074043
(
2015
).
2.
S.
Wehner
,
D.
Elkouss
, and
R.
Hanson
, “
Quantum internet: A vision for the road ahead
,”
Science
362
,
1
9
(
2018
).
3.
M.
Endres
,
H.
Bernien
,
A.
Keesling
,
H.
Levine
,
E. R.
Anschuetz
,
A.
Krajenbrink
,
C.
Senko
,
V.
Vuletic
,
M.
Greiner
, and
M. D.
Lukin
, “
Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
,”
Science
354
,
1024
1027
(
2016
).
4.
R.
Fan
,
Z.
Liu
,
D.
Jin
,
T.
Luo
,
N.
Li
,
S.
Li
,
Y.
Wang
,
Y.
Xia
, and
Z.
Lu
, “
High temporal waveform fidelity stimulated Brillouin scattering phase conjugate mirror using Novec-7500
,”
Opt. Express
31
,
1878
1887
(
2023
).
5.
S.
Flågan
,
P.
Maletinsky
,
R. J.
Warburton
, and
D.
Riedel
, “
Microcavity platform for widely tunable optical double resonance
,”
Optica
9
,
1197
1209
(
2022
).
6.
H.
Chen
,
Z.
Bai
,
Y.
Cai
,
X.
Yang
,
J.
Ding
,
Y.
Qi
,
B.
Yan
,
Y.
Li
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion
,”
Appl. Phys. Lett.
122
,
092202
(
2023
).
7.
X.
Cheng
,
Z.
Lin
,
X.
Yang
,
S.
Cui
,
X.
Zeng
,
H.
Jiang
, and
Y.
Feng
, “
High-power 1560 nm single-frequency erbium fiber amplifier core-pumped at 1480 nm
,”
High Pow. Laser Sci. Eng.
10
,
e3
(
2022
).
8.
W.
Liu
,
J.
Song
,
P.
Ma
,
H.
Xiao
, and
P.
Zhou
, “
Effects of background spectral noise in the phase-modulated single-frequency seed laser on high-power narrow-linewidth fiber amplifiers
,”
Photonics Res.
9
,
424
431
(
2021
).
9.
Y.
Wei
,
W.
Peng
,
J.
Li
,
P.
Jin
,
J.
Su
,
H.
Lu
, and
K.
Peng
, “
Self-mode-matching compact low-noise all-solid-state continuous wave single-frequency laser with output power of 140 W
,”
Opt. Lett.
48
,
676
679
(
2023
).
10.
C.
Robin
,
I.
Dajani
, and
B.
Pulford
, “
Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power
,”
Opt. Lett.
39
,
666
669
(
2014
).
11.
S.
Gundavarapu
,
G. M.
Brodnik
,
M.
Puckett
,
T.
Huffman
,
D.
Bose
,
R.
Behunin
,
J.
Wu
,
T.
Qiu
,
C.
Pinho
,
N.
Chauhan
,
J.
Nohava
,
P. T.
Rakich
,
K. D.
Nelson
,
M.
Salit
, and
D. J.
Blumenthal
, “
Sub-hertz fundamental linewidth photonic integrated Brillouin laser
,”
Nat. Photonics
13
,
60
67
(
2019
).
12.
I. S.
Grudinin
,
A. B.
Matsko
, and
L.
Maleki
, “
Brillouin lasing with a CaF2 whispering gallery mode resonator
,”
Phys. Rev. Lett.
102
,
043902
(
2009
).
13.
H.
Lee
,
T.
Chen
,
J.
Li
,
K. Y.
Yang
,
S.
Jeon
,
O.
Painter
, and
K. J.
Vahala
, “
Chemically etched ultrahigh-Q wedge-resonator on a silicon chip
,”
Nat. Photonics
6
,
369
373
(
2012
).
14.
N.
Chauhan
,
A.
Isichenko
,
K.
Liu
,
J.
Wang
,
Q.
Zhao
,
R. O.
Behunin
,
P. T.
Rakich
,
A. M.
Jayich
,
C.
Fertig
,
C. W.
Hoyt
, and
D. J.
Blumenthal
, “
Visible light photonic integrated Brillouin laser
,”
Nat. Commun.
12
,
4685
4693
(
2021
).
15.
M.
Suh
,
Q.
Yang
, and
K. J.
Vahala
, “
Phonon-limited-linewidth of Brillouin lasers at cryogenic temperatures
,”
Phys. Rev. Lett.
119
,
143901
(
2017
).
16.
Z.
Yuan
,
H.
Wang
,
L.
Wu
,
M.
Gao
, and
K. J.
Vahala
, “
Linewidth enhancement factor in a microcavity Brillouin laser
,”
Optica
7
,
1150
1153
(
2020
).
17.
L.
Jiang
,
L.
Hansuek
,
C.
Tong
, and
K. J.
Vahala
, “
Characterization of a high coherence, Brillouin microcavity laser on silicon
,”
Opt. Express
20
,
20170
20180
(
2012
).
18.
Y.
Qin
,
S.
Ding
,
M.
Zhang
,
Y.
Wang
,
Q.
Shi
,
Z.
Li
,
J.
Wen
, and
X.
Jiang
, “
High-power, low-noise Brillouin laser on a silicon chip
,”
Opt. Lett.
47
,
1638
1641
(
2022
).
19.
T.
Heupel
,
M.
Weitz
,
S.
Chu
, and
T.
Hänsch
, “
Cavity enhanced cw stimulated Brillouin scattering in a fused silica plate
,”
Opt. Commun.
140
,
281
284
(
1997
).
20.
Z.
Bai
,
R. J.
Williams
,
O.
Kitzler
,
S.
Sarang
,
D. J.
Spence
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Diamond Brillouin laser in the visible
,”
APL Photonics
5
,
031301
(
2020
).
21.
D.
Jin
,
Z.
Bai
,
Z.
Lu
,
R.
Fan
,
Z.
Zhao
,
X.
Yang
,
Y.
Wang
, and
R. P.
Mildren
, “
22.5-W narrow-linewidth diamond Brillouin laser at 1064 nm
,”
Opt. Lett.
47
,
5360
5363
(
2022
).
22.
A.
Debut
,
S.
Randoux
, and
J.
Zemmouri
, “
Linewidth narrowing in Brillouin lasers: Theoretical analysis
,”
Phys. Rev. A
62
,
023803
(
2000
).
23.
D.
Jin
,
Z.
Bai
,
Z.
Zhao
,
Y.
Chen
,
W.
Fan
,
Y.
Wang
,
R. P.
Mildren
, and
Z.
Lv
, “
Linewidth narrowing in free-space running diamond Brillouin lasers
,”
High Power Laser Sci. Eng.
11
,
e47
(
2023
).
24.
D.
Jin
,
Z.
Bai
,
M.
Li
,
X.
Yang
,
Y.
Wang
,
R. P.
Mildren
, and
Z.
Lu
, “
Modeling and characterization of high-power single frequency free-space Brillouin lasers
,”
Opt. Express
31
,
2942
2955
(
2023
).
25.
W.
Loh
,
S. B.
Papp
, and
S. A.
Diddams
, “
Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers
,”
Phys. Rev. A
91
,
053843
(
2015
).
26.
B. J.
Eggleton
,
C. G.
Poulton
,
P. T.
Rakich
,
M. J.
Steel
, and
G.
Bahl
, “
Brillouin integrated photonics
,”
Nat. Photonics
13
,
664
677
(
2019
).
27.
O.
Svelto
and
D. C.
Hanna
,
Principles of Lasers
,
15th ed
. (
Springer
,
New York
,
2010
).
28.
R. L.
Barger
,
M. S.
Sorem
, and
J. L.
Hall
, “
Frequency stabilization of a cw dye laser
,”
Appl. Phys. Lett.
22
,
573
575
(
1973
).
29.
B.
Chen
,
Z.
Bai
,
X.
Hun
,
J.
Wang
,
C.
Cui
,
Y.
Qi
,
B.
Yan
,
J.
Ding
,
K.
Wang
,
Y.
Wang
, and
Z.
Lu
, “
Gain characteristics of stimulated Brillouin scattering in fused silica
,”
Opt. Express
31
,
5699
5707
(
2023
).
30.
S.
Huang
,
T.
Zhu
,
Z.
Cao
,
M.
Liu
,
M.
Deng
,
J.
Liu
, and
X.
Li
, “
Laser linewidth measurement based on amplitude difference comparison of coherent envelope
,”
IEEE Photonics Technol. Lett.
28
,
759
762
(
2016
).
31.
Z.
Zhao
,
Z.
Bai
,
D.
Jin
,
Y.
Qi
,
J.
Ding
,
B.
Yan
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Narrow laser-linewidth measurement using short delay self-heterodyne interferometry
,”
Opt. Express
30
,
30600
30610
(
2022
).
32.
H.
Lee
,
M.-G.
Suh
,
T.
Chen
,
J.
Li
,
S. A.
Diddams
, and
K. J.
Vahala
, “
Spiral resonators for on-chip laser frequency stabilization
,”
Nat. Commun.
4
,
2468
2474
(
2013
).
33.
K.
Liu
,
N.
Chauhan
,
J.
Wang
,
A.
Isichenko
,
G. M.
Brodnik
,
P. A.
Morton
,
R. O.
Behunin
,
S. B.
Papp
, and
D. J.
Blumenthal
, “
36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator
,”
Optica
9
,
770
775
(
2022
).
You do not currently have access to this content.