All-weather, high-efficiency solar photothermal anti-icing/deicing systems are of great importance for solving the problem of ice accumulation on outdoor equipment surfaces. In this study, a photothermal phase change material with a micro-porous structure (MP@PPCM) is prepared via salt-template and melt-blending methods. Owing to the synergistic effect of the latent heat released from the phase change material and the thermal-insulation effect of the internal micro-porous structure, MP@PPCM exhibits a low cooling rate and a high equilibrium temperature during the cooling process. In addition, MP@PPCM exhibits excellent photothermal conversion performance under light illumination, providing the basis for highly efficient anti-icing/deicing. Notably, the single droplet icing and melting results show that the droplet has the longest icing delay time and the shortest melting time on the MP@PPCM sample compared to that on the other samples analyzed. Furthermore, day–night alternation, multiple freezing–melting, and chemical stability tests verify the outdoor applications potential of MP@PPCM. The study results provide a way to prepare high-efficiency photothermal anti-icing/deicing materials in the absence of light conditions.

1.
Z. W.
He
,
H. M.
Xie
,
M. I.
Jamil
,
T.
Li
, and
Q. H.
Zhang
,
Adv. Mater. Interfaces
9
(
16
),
2200275
(
2022
).
2.
F.
Wang
,
Y. Z.
Zhuo
,
Z. W.
He
,
S. B.
Xiao
,
J. Y.
He
, and
Z. L.
Zhang
,
Adv. Sci.
8
(
21
),
2101163
(
2021
).
3.
S. Y.
Yang
,
C. Y.
Wu
,
G. L.
Zhao
,
J.
Sun
,
X.
Yao
,
X. H.
Ma
, and
Z. K.
Wang
,
Cell Rep. Phys. Sci.
2
(
7
),
100474
(
2021
).
4.
P.
Guo
,
Z. B.
Wang
,
X.
Han
, and
L. P.
Heng
,
Mater. Chem. Front.
5
(
4
),
1716
1742
(
2021
).
5.
P. F.
Cheng
,
D.
Wang
, and
P.
Schaaf
,
Adv. Sustain. Syst.
6
(
9
),
2200115
(
2022
).
6.
C.
Zhang
,
H. Q.
Liang
,
Z. K.
Xu
, and
Z. K.
Wang
,
Adv. Sci.
6
(
18
),
1900883
(
2019
).
7.
R.
Liu
,
J.
Li
,
J. J.
Duan
,
B. Y.
Yu
,
W. K.
Xie
,
B.
Qi
,
H.
Wang
,
X. Y.
Zhuang
,
S. Y.
Liu
,
P.
Liu
,
G. M.
Tao
,
M.
Xu
, and
J.
Zhou
,
Cell Rep. Phys. Sci.
2
(
8
),
100533
(
2021
).
8.
W.
Ma
,
Y.
Li
,
C. Y. H.
Chao
,
C. Y.
Tso
,
B. L.
Huang
,
W. H.
Li
, and
S. H.
Yao
,
Cell Rep. Phys. Sci.
2
(
3
),
100384
(
2021
).
9.
B. Q.
Wang
,
Z. M.
Jing
,
M. X.
Zhao
,
P.
Yu
,
E.
Ashalley
,
P. H.
Li
,
C. P.
Ma
,
X.
Tong
,
R.
Caputo
,
A. O.
Govorov
,
H. X.
Xu
, and
Z. M.
Wang
,
Adv. Opt. Mater.
10
(
12
),
2200168
(
2022
).
10.
B.
Wang
,
P.
Yu
,
Q.
Yang
,
Z.
Jing
,
W.
Wang
,
P.
Li
,
X.
Tong
,
F.
Lin
,
D.
Wang
,
G. E.
Lio
,
R.
Caputo
,
O.
Avalos-Ovando
,
A. O.
Govorov
,
H.
Xu
, and
Z.
Wang
,
Mater. Today Phys.
24
,
100683
(
2022
).
11.
Y.
Li
,
W.
Ma
,
Y. S.
Kwon
,
W. H.
Li
,
S. H.
Yao
, and
B. L.
Huang
,
Adv. Funct. Mater.
32
(
25
),
2113297
(
2022
).
12.
C. H.
Chen
,
Z.
Tian
,
X.
Luo
,
G. C.
Jiang
,
X. Y.
Hu
,
L. Z.
Wang
,
R.
Peng
,
H. J.
Zhang
, and
M. L.
Zhong
,
Chem. Eng. J.
450
,
137936
(
2022
).
13.
S.
Dash
,
J.
de Ruiter
, and
K. K.
Varanasi
,
Sci. Adv.
4
(
8
),
eaat0127
(
2018
).
14.
Z. T.
Xie
,
H.
Wang
,
Q. Y.
Deng
,
Y.
Tian
,
Y. C.
Shao
,
R.
Chen
,
X.
Zhu
, and
Q.
Liao
,
J. Phys. Chem. Lett.
13
(
43
),
10237
10244
(
2022
).
15.
Z. T.
Xie
,
H.
Wang
,
M.
Li
,
Y.
Tian
,
Q. Y.
Deng
,
R.
Chen
,
X.
Zhu
, and
Q.
Liao
,
Chem. Eng. J.
435
,
135025
(
2022
).
16.
G.
Jiang
,
L.
Chen
,
S. D.
Zhang
, and
H. X.
Huang
,
ACS Appl. Mater. Interfaces
10
(
42
),
36505
36511
(
2018
).
17.
Y. B.
Liu
,
Y.
Wu
,
Y. Z.
Liu
,
R. N.
Xu
,
S. J.
Liu
, and
F.
Zhou
,
ACS Appl. Mater. Interfaces
12
(
41
),
46981
46990
(
2020
).
18.
G.
Jiang
,
Z. Y.
Liu
, and
J. H.
Hu
,
Adv. Mater. Interfaces
9
(
2
),
2101704
(
2022
).
19.
Y. B.
Liu
,
R. N.
Xu
,
N.
Luo
,
Y. Z.
Liu
,
Y.
Wu
,
B.
Yu
,
S. J.
Liu
, and
F.
Zhou
,
Adv. Mater. Technol.
6
(
11
),
2100371
(
2021
).
20.
B.
Yu
,
Z. R.
Sun
,
Y. B.
Liu
,
Z. Z.
Zhang
,
Y.
Wu
, and
F.
Zhou
,
ACS Appl. Mater. Interfaces
13
(
31
),
37609
37616
(
2021
).
21.
S. W.
Wu
,
Y. J.
Du
,
Y.
Alsaid
,
D.
Wu
,
M. T.
Hua
,
Y. C.
Yan
,
B. W.
Yao
,
Y. F.
Ma
,
X. Y.
Zhu
, and
X. M.
He
,
Proc. Natl. Acad. Sci. U. S. A.
117
(
21
),
11240
11246
(
2020
).
22.
M. I.
Jamil
,
Q. Y.
Wang
,
A.
Ali
,
M.
Hussain
,
T.
Aziz
,
X. L.
Zhan
, and
Q. H.
Zhang
,
J. Bionic Eng.
18
(
3
),
548
558
(
2021
).
23.
C.
Yang
,
Z. W.
Li
,
Y.
Huang
,
K. Y.
Wang
,
Y. Z.
Long
,
Z. L.
Guo
,
X. Y.
Li
, and
H.
Wu
,
Nano Lett.
21
(
7
),
3198
3204
(
2021
).
24.
W. W.
Zheng
,
L.
Teng
,
Y. K.
Lai
,
T. X.
Zhu
,
S. H.
Li
,
X. W.
Wu
,
W. L.
Cai
,
Z.
Chen
, and
J. Y.
Huang
,
Chem. Eng. J.
427
,
130922
(
2022
).
25.
C. Y.
Wu
,
H. Y.
Geng
,
S. C.
Tan
,
J. Y.
Lv
,
H. Q.
Wang
,
Z. Y.
He
, and
J. J.
Wang
,
Mater. Horiz.
7
(
8
),
2097
2104
(
2020
).
26.
S. Y.
Sheng
,
Z. C.
Zhu
,
Z. H.
Wang
,
T. T.
Hao
,
Z. Y.
He
, and
J. J.
Wang
,
Sci. China Mater.
65
(
5
),
1369
1376
(
2022
).
27.
L.
Wang
,
J. X.
Li
,
Z. C.
Chen
,
Z. T.
Song
,
X.
Meng
, and
X. M.
Chen
,
Adv. Mater. Inter.
9
(
35
),
2201758
(
2022
).
28.
Y. J.
Gou
,
J.
Han
,
Y. D.
Li
,
Y.
Qin
,
Q. G.
Li
, and
X. H.
Zhong
,
Energies
16
(
1
),
408
(
2022
).
29.
S. M.
Cheng
,
P.
Guo
,
X.
Wang
,
P. D.
Che
,
X.
Han
,
R. Y.
Jin
,
L. P.
Heng
, and
L.
Jiang
,
Chem. Eng. J.
431
,
133411
(
2022
).
30.
B. X.
Zhang
,
Y. X.
Ying
,
Y. X.
Zhu
,
Y. N.
Jiang
,
Y. X.
Zhang
, and
Y. F.
Qiu
,
Carbon
174
,
10
23
(
2021
).
31.
R. H.
Zan
,
Y. J.
Li
,
S. Q.
Tao
,
G. W.
Li
,
R. H.
Wu
,
D. J.
Liu
,
D. G.
Peng
,
Y.
Liu
, and
L. F.
Fei
,
Langmuir
38
(
44
),
13584
13593
(
2022
).
32.
Y. H.
Cheng
,
Y. R.
Wang
,
X.
Zhang
,
J. M.
Zhang
,
Z. Y.
He
,
J. J.
Wang
, and
J.
Zhang
,
Nano Res.
16
,
7171
7179
(
2023
).
33.
T. T.
Hao
,
Z. C.
Zhu
,
H. G.
Yang
,
Z. Y.
He
, and
J. J.
Wang
,
ACS Appl. Mater. Interfaces
13
(
37
),
44948
44955
(
2021
).
34.
L. H.
Song
,
C.
Yang
,
S. Y.
Zhang
,
Y.
Wang
,
R.
Zou
,
E.
Cheng
,
A.
Lee
, and
Q. B.
Deng
,
Langmuir
38
(
49
),
15245
15252
(
2022
).
35.
A.
Azimi Yancheshme
,
A.
Allahdini
,
K.
Maghsoudi
,
R.
Jafari
, and
G.
Momen
,
J. Energy Storage
31
,
101638
(
2020
).
36.
M.
Shamshiri
,
R.
Jafari
, and
G.
Momen
,
Colloid Surf., A
655
,
130157
(
2022
).
37.
Y.
Yuan
,
H. Y.
Xiang
,
G. Y.
Liu
, and
R. J.
Liao
,
Surf. Interfaces
27
,
101516
(
2021
).
38.
H.
Yang
,
Z. H.
Wang
,
S. C.
Tan
,
R. H.
Zang
,
C. Y.
Li
,
Z. Y.
He
,
J. X.
Meng
,
S. T.
Wang
, and
J. J.
Wang
,
Adv. Mater. Technol.
7
(
12
),
2200502
(
2022
).
39.
B.
Yu
,
Z. R.
Sun
,
Y. B.
Liu
,
Y.
Wu
, and
F.
Zhou
,
Langmuir
39
(
4
),
1686
1693
(
2023
).
40.
F. Q.
Chu
,
S. X.
Li
,
Z. F.
Hu
, and
X. M.
Wu
,
Appl. Phys. Lett.
122
(
16
),
160503
(
2023
).
41.
Z. F.
Hu
,
F. Q.
Chu
, and
X. M.
Wu
,
Extreme Mech. Lett.
52
,
101665
(
2022
).
42.
F. Q.
Chu
,
S. H.
Gao
,
X.
Zhang
,
X. M.
Wu
, and
D. S.
Wen
,
Appl. Phys. Lett.
115
(
7
),
073703
(
2019
).
43.
F. Q.
Chu
,
X.
Zhang
,
S. K.
Li
,
H. C.
Jin
,
J.
Zhang
,
X. M.
Wu
, and
D. S.
Wen
,
Phys. Rev. Fluids
4
(
7
),
071601
(
2019
).

Supplementary Material

You do not currently have access to this content.