Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.

1.
E.
Verhoeven
,
R.
Schuurhuis
,
M.
Mastenbroek
,
P.
Jonkers
,
F.
Bornebroek
,
A.
Minnaert
,
H.
van Dijck
,
P.
Yaghoobi
,
G.
Fisser
,
P.
Tayebati
et al, “
0.33 NA EUV systems for high volume manufacturing
,”
Proc. SPIE
11517
,
1151703
(
2020
).
2.
T.
Tomie
, “
Tin laser-produced plasma as the light source for extreme ultraviolet lithography high-volume manufacturing: History, ideal plasma, present status, and prospects
,”
J. Micro/Nanolithogr., MEMS, MOEMS
11
,
021109
(
2012
).
3.
A.
Takahashi
,
D.
Nakamura
,
K.
Tamaru
,
T.
Akiyama
, and
T.
Okada
, “
Emission characteristics of debris from CO2 and Nd: YAG laser-produced tin plasmas for extreme ultraviolet lithography light source
,”
Appl. Phys. B
92
,
73
77
(
2008
).
4.
D.
Nakamura
,
K.
Tamaru
,
Y.
Hashimoto
,
T.
Okada
,
H.
Tanaka
, and
A.
Takahashi
, “
Mitigation of fast ions generated from laser-produced Sn plasma for extreme ultraviolet light source by H2 gas
,”
J. Appl. Phys.
102
,
123310
(
2007
).
5.
D.
Klunder
,
M.
van Herpen
,
V.
Banine
, and
K.
Gielissen
, “
Debris mitigation and cleaning strategies for Sn-based sources for EUV lithography
,”
Proc. SPIE
5751
,
943
951
(
2005
).
6.
S.
Harilal
,
B.
O'shay
,
Y.
Tao
, and
M.
Tillack
, “
Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects
,”
Appl. Phys. B
86
,
547
553
(
2007
).
7.
D. T.
Elg
,
J. R.
Sporre
,
G. A.
Panici
,
S. N.
Srivastava
, and
D. N.
Ruzic
, “
In situ collector cleaning and extreme ultraviolet reflectivity restoration by hydrogen plasma for extreme ultraviolet sources
,”
J. Vacuum Sci. Technol. A
34
,
021305
(
2016
).
8.
D.
Abramenko
,
M.
Spiridonov
,
P.
Krainov
,
V.
Krivtsun
,
D.
Astakhov
,
V.
Medvedev
,
M.
van Kampen
,
D.
Smeets
, and
K.
Koshelev
, “
Measurements of hydrogen gas stopping efficiency for tin ions from laser-produced plasma
,”
Appl. Phys. Lett.
112
,
164102
(
2018
).
9.
T.
Wu
,
X.
Wang
,
H.
Lu
, and
P.
Lu
, “
Debris mitigation power of various buffer gases for CO2 laser produced tin plasmas
,”
J. Phys. D: Appl. Phys.
45
,
475203
(
2012
).
10.
J. R.
Sporre
,
D. T.
Elg
,
K. K.
Kalathiparambil
, and
D. N.
Ruzic
, “
Modeling and measuring the transport and scattering of energetic debris in an extreme ultraviolet plasma source
,”
J. Micro/Nanolithogr., MEMS, MOEMS
15
,
013503
(
2016
).
11.
T.
Sizyuk
, “
Background pressure effects on EUV source efficiency and produced debris characteristics
,”
Proc. SPIE
10143
,
101432J
(
2017
).
12.
A. S.
Stodolna
,
T.
de Faria Pinto
,
F.
Ali
,
A.
Bayerle
,
D.
Kurilovich
,
J.
Mathijssen
,
R.
Hoekstra
,
O. O.
Versolato
,
K. S.
Eikema
, and
S.
Witte
, “
Controlling ion kinetic energy distributions in laser produced plasma sources by means of a picosecond pulse pair
,”
J. Appl. Phys.
124
,
053303
(
2018
).
13.
S.
Rai
,
K. I.
Bijlsma
,
L.
Poirier
,
E.
De Wit
,
L.
Assink
,
A.
Lassise
,
I.
Rabadán
,
L.
Méndez
,
J.
Sheil
,
O. O.
Versolato
, and
R.
Hoekstra
, “
Evidence of production of keV Sn+ ions in the H2 buffer gas surrounding an Sn-plasma EUV source
,”
Plasma Sources Sci. Technol.
32
,
035006
(
2023
).
14.
A.
Kuznetsov
,
M.
Gleeson
, and
F.
Bijkerk
, “
Ion effects in hydrogen-induced blistering of Mo/Si multilayers
,”
J. Appl. Phys.
114
,
113507
(
2013
).
15.
H.
Tomuro
,
M.
Ji
,
R.
Nagata
,
K.
Kouge
,
T.
Yanagida
,
M.
Morita
,
M.
Andou
,
Y.
Honda
,
K.
Uchino
, and
T.
Yoshitake
, “
Evaluation of hydrogen-induced blistering of Mo/Si multilayers with a capping layer
,”
Plasma Fusion Res.
17
,
1406005
(
2022
).
16.
V. Y.
Banine
,
K.
Koshelev
, and
G.
Swinkels
, “
Physical processes in euv sources for microlithography
,”
J. Phys. D: Appl. Phys.
44
,
253001
(
2011
).
17.
Y.
Ueno
,
G.
Soumagne
,
M.
Moriya
,
T.
Suganuma
,
T.
Abe
,
H.
Komori
,
A.
Endo
, and
A.
Sumitani
, “
Magnetic debris mitigation of a CO2 laser-produced Sn plasma
,”
Proc. SPIE
6921
,
69212Z
(
2008
).
18.
D. T.
Elg
,
J. R.
Sporre
,
D.
Curreli
,
I. A.
Shchelkanov
,
D. N.
Ruzic
, and
K. R.
Umstadter
, “
Magnetic debris mitigation system for extreme ultraviolet sources
,”
J. Micro/Nanolithogr., MEMS, MOEMS
14
,
013506
(
2015
).
19.
H.
Hosoda
,
S.
Nagai
,
T.
Yanagida
,
Y.
Shiraishi
,
Y.
Ueno
,
K.
Miyao
,
H.
Hayashi
,
Y.
Watanabe
,
T.
Abe
,
H.
Nakarai
et al, “
The development progress of the high power LPP-EUV light source using a magnetic field
,”
Proc. SPIE
11609
,
116091G
(
2021
).
20.
H.
Hoshino
,
H.
Komori
, and
A.
Endo
, “
Light source device and exposure equipment using the same
,” US Patent 6,987,279 (January
2006
).
21.
R.
Post
, “
The magnetic mirror approach to fusion
,”
Nucl. Fusion
27
,
1579
(
1987
).
22.
C.
Parnell
,
J.
Smith
,
T.
Neukirch
, and
E.
Priest
, “
The structure of three-dimensional magnetic neutral points
,”
Phys. Plasmas
3
,
759
770
(
1996
).
23.
H.
Grad
,
Containment in Cusped Plasma Systems
(
New York University Institute of Mathematical Sciences, Magneto-fluid
,
1961
), Vol.
9496
.
24.
R.
Keller
and
I.
Jones
, “
Confinement d'un plasma par un systeme polyedrique à courant alternatif
,”
Z. Naturforsch., A
21
,
1085
1089
(
1966
).
25.
O. O.
Versolato
, “
Physics of laser-driven tin plasma sources of EUV radiation for nanolithography
,”
Plasma Sources Sci. Technol.
28
,
083001
(
2019
).
26.
D. J.
Hemminga
,
L.
Poirier
,
M. M.
Basko
,
R.
Hoekstra
,
W.
Ubachs
,
O. O.
Versolato
, and
J.
Sheil
, “
High-energy ions from Nd:YAG laser ablation of tin microdroplets: Comparison between experiment and a single-fluid hydrodynamic model
,”
Plasma Sources Sci. Technol.
30
,
105006
(
2021
).
27.
M.
Brandstätter
,
N.
Gambino
, and
R. S.
Abhari
, “
Temporally and spatially resolved ion dynamics of droplet-based laser-produced tin plasmas in lateral expansion direction
,”
J. Appl. Phys.
123
,
043308
(
2018
).
28.
H.
Summers
, “
The ADAS user manual, version 2.6
,” http://www.adas.ac.uk/ (
2004
).
You do not currently have access to this content.