To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr > 20  μ C/cm2) along with a MOS-cap window (>4 V), good retention capability (>10 years), fast program/erase response operation times (<200  μ s), and strong durability (>105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.

1.
C.-H.
Lee
,
S.-H.
Hur
,
Y.-C.
Shin
,
J.-H.
Choi
,
D.-G.
Park
, and
K.
Kim
,
Appl. Phys. Lett.
86
(
15
),
152908
(
2005
).
2.
M. A.
Reed
,
J.
Chen
,
A.
Rawlett
,
D.
Price
, and
J.
Tour
,
Appl. Phys. Lett.
78
(
23
),
3735
(
2001
).
3.
K.
Narayanan Unni
,
R.
de Bettignies
,
S.
Dabos-Seignon
, and
J.-M.
Nunzi
,
Appl. Phys. Lett.
85
(
10
),
1823
(
2004
).
4.
E.
Fontana
, Jr.
and
G. M.
Decad
,
AIP Adv.
8
(
5
),
056506
(
2018
).
5.
E.
Fontana
, Jr.
,
G.
Decad
, and
S. R.
Hetzler
,
J. Appl. Phys.
117
(
17
),
17E301
(
2015
).
6.
X.
Lu
and
J.
Dai
,
Appl. Phys. Lett.
88
(
11
),
113104
(
2006
).
7.
T.-M.
Pan
and
W.-W.
Yeh
,
Appl. Phys. Lett.
92
(
17
),
173506
(
2008
).
8.
A.
Suresh
,
S.
Novak
,
P.
Wellenius
,
V.
Misra
, and
J. F.
Muth
,
Appl. Phys. Lett.
94
(
12
),
123501
(
2009
).
9.
C.-Y.
Lu
,
J. Nanosci. Nanotechnol.
12
(
10
),
7604
(
2012
).
10.
J.-D.
Lee
,
S.-H.
Hur
, and
J.-D.
Choi
,
IEEE Electron Device Lett.
23
(
5
),
476
(
2002
).
11.
S.
Jeon
,
J. H.
Han
,
J.
Lee
,
S.
Choi
,
H.
Hwang
, and
C.
Kim
,
IEEE Electron Device Lett.
27
(
6
),
486
(
2006
).
12.
C.-Y.
Chen
,
K.-S.
Chang-Liao
,
J.-J.
Ho
, and
T.-K.
Wang
,
Solid-State Electron.
78
,
22
(
2012
).
13.
Y. W.
Lee
,
S.-J.
Kim
,
S.-Y.
Lee
,
W.-G.
Lee
,
K.-S.
Yoon
,
J.-W.
Park
, and
M.-K.
Han
,
Electrochem. Solid-State Lett.
15
(
4
),
H84
(
2012
).
14.
J.
Li
,
H.
Zhang
,
Y.
Ding
,
J.
Li
,
S.
Wang
,
D. W.
Zhang
, and
P.
Zhou
,
Sci. Bull.
64
(
20
),
1518
(
2019
).
15.
W.
He
,
J.
Pu
,
D. S.
Chan
, and
B. J.
Cho
,
IEEE Trans. Electron Devices
56
(
11
),
2746
(
2009
).
16.
H.-W.
You
and
W.-J.
Cho
,
Appl. Phys. Lett.
96
(
9
),
093506
(
2010
).
17.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
T.
Moon
, and
C.
Seong Hwang
,
Appl. Phys. Lett.
102
(
24
),
242905
(
2013
).
18.
T.
Song
,
R.
Bachelet
,
G.
Saint-Girons
,
R.
Solanas
,
I.
Fina
, and
F.
Sánchez
,
ACS Appl. Electron. Mater.
2
(
10
),
3221
(
2020
).
19.
D.
Spassov
,
A.
Skeparovski
,
A.
Paskaleva
, and
N.
Novkovski
,
Thin Solid Films
614
,
7
(
2016
).
20.
X.
Lan
,
X.
Ou
,
Y.
Lei
,
C.
Gong
,
Q.
Yin
,
B.
Xu
,
Y.
Xia
,
J.
Yin
, and
Z.
Liu
,
Appl. Phys. Lett.
103
(
19
),
192905
(
2013
).
21.
D.
Lehninger
,
R.
Olivo
,
T.
Ali
,
M.
Lederer
,
T.
Kämpfe
,
C.
Mart
,
K.
Biedermann
,
K.
Kühnel
,
L.
Roy
, and
M.
Kalkani
,
Phys. Status Solidi A
217
(
8
),
1900840
(
2020
).
22.
W.
Kern
,
J. Electrochem. Soc.
137
(
6
),
1887
(
1990
).
23.
S.
Dutta
,
H.
Ye
,
A. A.
Khandker
,
S. G.
Kirtania
,
A.
Khanna
,
K.
Ni
, and
S.
Datta
,
IEEE Electron Device Lett.
43
(
3
),
382
(
2022
).
24.
D.
Spassov
,
A.
Paskaleva
,
T. A.
Krajewski
,
E.
Guziewicz
,
G.
Luka
, and
T.
Ivanov
,
Phys. Status Solidi A
215
(
16
),
1700854
(
2018
).
25.
J.
Hur
,
N.
Tasneem
,
G.
Choe
,
P.
Wang
,
Z.
Wang
,
A. I.
Khan
, and
S.
Yu
,
Nanotechnology
31
(
50
),
505707
(
2020
).
26.
C.-H.
Cheng
and
A.
Chin
,
IEEE Electron Device Lett.
35
(
1
),
138
(
2014
).
27.
D.
Das
,
B.
Buyantogtokh
,
V.
Gaddam
, and
S.
Jeon
,
IEEE Trans. Electron Devices
68
(
4
),
1996
(
2021
).
28.
É.
O'Connor
,
M.
Halter
,
F.
Eltes
,
M.
Sousa
,
A.
Kellock
,
S.
Abel
, and
J.
Fompeyrine
,
APL Mater.
6
(
12
),
121103
(
2018
).
29.
Z.
Tang
,
Y.
Xia
,
H.
Xu
,
J.
Yin
,
Z.
Liu
,
A.
Li
,
X.
Liu
,
F.
Yan
, and
X.
Ji
,
Electrochem. Solid-State Lett.
14
(
2
),
G13
(
2011
).
30.
I.-H.
Nam
,
J. S.
Sim
,
S. I.
Hong
,
B.-G.
Park
,
J. D.
Lee
,
S.-W.
Lee
,
M.-S.
Kang
,
Y.-W.
Kim
,
K.-P.
Suh
, and
W. S.
Lee
,
IEEE Trans. Electron Devices
48
(
10
),
2310
(
2001
).
31.
R.
Clerc
,
A.
Spinelli
,
G.
Ghibaudo
, and
G.
Pananakakis
,
J. Appl. Phys.
91
(
3
),
1400
(
2002
).
32.
S. M.
Sze
,
Y.
Li
, and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2021
).
33.
L.
Li
,
L.
Xie
, and
X.
Pan
,
Rep. Prog. Phys.
82
(
12
),
126502
(
2019
).
34.
G. P.
Gakis
,
C.
Vahlas
,
H.
Vergnes
,
S.
Dourdain
,
Y.
Tison
,
H.
Martinez
,
J.
Bour
,
D.
Ruch
,
A. G.
Boudouvis
, and
B.
Caussat
,
Appl. Surf. Sci.
492
,
245
(
2019
).
35.
Q.
Zhang
,
X.
Li
,
L.
Wang
,
T.
Zhang
,
Y.
Wang
, and
Z.
Shao
,
ACM Trans. Des. Autom. Electron. Syst.
20
(
3
),
1
(
2015
).
36.
P.-K.
Lin
,
M.-L.
Chiao
, and
D.-W.
Chang
,
IEEE Trans. Consum. Electron.
56
(
2
),
642
(
2010
).
37.
M.-K.
Kim
,
I.-J.
Kim
, and
J.-S.
Lee
,
Sci. Adv.
7
(
3
),
eabe1341
(
2021
).
38.
A.
Gruverman
,
D.
Wu
, and
J.
Scott
,
Phys. Rev. Lett.
100
(
9
),
097601
(
2008
).
39.
P.
Larsen
,
G.
Kampschöer
,
M.
Ulenaers
,
G.
Spierings
, and
R.
Cuppens
,
Appl. Phys. Lett.
59
(
5
),
611
(
1991
).
40.
M.
Si
,
X.
Lyu
,
P. R.
Shrestha
,
X.
Sun
,
H.
Wang
,
K. P.
Cheung
, and
P. D.
Ye
,
Appl. Phys. Lett.
115
(
7
),
072107
(
2019
).
You do not currently have access to this content.