Two-dimensional (2D) multiferroic materials combining intrinsic ferroelectricity, ferromagnetism, and ferroelasticity, which promise piezo-magnetoelectric effects, are highly desired for their potential applications in high-density and multi-functional spintronic devices. However, a room-temperature 2D triferroic semiconductor has never been reported. Here, on the basis of first-principle calculations, we predict that the CrNCl monolayer is a potential 2D triferroic semiconductor with ferroelectricity, ferromagnetism, and ferroelasticity coexisting and strongly coupling at room temperature. The strong d-p hybridizations between Cr and N ions give rise to Cr–N dimerizations, leading to spontaneous symmetry-breaking and an in-plane electric polarization, as well as a remarkable enhancement of ferromagnetic super-exchange interactions. Moreover, the ferroelastic transition is accompanied by a 90° rotation of the in-plane electric polarization and the magnetic easy axis, suggesting a strong piezo-magnetoelectric effect. These findings provide insights into multiferroic behaviors in 2D systems and can help facilitate further advancements in spintronics.

1.
N. A.
Spaldin
,
M.
Fiebig
, and
S.
Materials
, “
The renaissance of magnetoelectric multiferroics
,”
Science
309
(
5733
),
391
392
(
2005
).
2.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
, “
Multiferroic and magnetoelectric materials
,”
Nature
442
(
7104
),
759
765
(
2006
).
3.
S.
Dong
,
J.-M.
Liu
,
S.-W.
Cheong
, and
Z.
Ren
, “
Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology
,”
Adv. Phys.
64
(
5–6
),
519
626
(
2015
).
4.
C.
Lu
,
M.
Wu
,
L.
Lin
, and
J.-M.
Liu
, “
Single-phase multiferroics: New materials, phenomena, and physics
,”
Natl. Sci. Rev.
6
(
4
),
653
668
(
2019
).
5.
M.
Bibes
and
A.
Barthélémy
, “
Towards a magnetoelectric memory
,”
Nat. Mater.
7
(
6
),
425
426
(
2008
).
6.
N. A.
Spaldin
and
R.
Ramesh
, “
Advances in magnetoelectric multiferroics
,”
Nat. Mater.
18
(
3
),
203
212
(
2019
).
7.
N. A.
Hill
, “
Why are there so few magnetic ferroelectrics?
,”
J. Phys. Chem. B
104
(
29
),
6694
6709
(
2000
).
8.
K. F.
Wang
,
J. M.
Liu
, and
Z. F.
Ren
, “
Multiferroicity: The coupling between magnetic and polarization orders
,”
Adv. Phys.
58
(
4
),
321
448
(
2009
).
9.
J. H.
Lee
,
L.
Fang
,
E.
Vlahos
,
X.
Ke
,
Y. W.
Jung
,
L. F.
Kourkoutis
,
J.-W.
Kim
,
P. J.
Ryan
,
T.
Heeg
,
M.
Roeckerath
et al, “
A strong ferroelectric ferromagnet created by means of spin–lattice coupling
,”
Nature
466
(
7309
),
954
958
(
2010
).
10.
S.
Dong
,
H.
Xiang
, and
E.
Dagotto
, “
Magnetoelectricity in multiferroics: A theoretical perspective
,”
Natl. Sci. Rev.
6
(
4
),
629
641
(
2019
).
11.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
et al, “
Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
,”
Nature
546
(
7657
),
265
269
(
2017
).
12.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
et al, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
(
7657
),
270
273
(
2017
).
13.
Y.
Deng
,
Y.
Yu
,
Y.
Song
,
J.
Zhang
,
N. Z.
Wang
,
Z.
Sun
,
Y.
Yi
,
Y. Z.
Wu
,
S.
Wu
,
J.
Zhu
et al, “
Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
,”
Nature
563
(
7729
),
94
99
(
2018
).
14.
K.
Lee
,
A. H.
Dismukes
,
E. J.
Telford
,
R. A.
Wiscons
,
J.
Wang
,
X.
Xu
,
C.
Nuckolls
,
C. R.
Dean
,
X.
Roy
, and
X.
Zhu
, “
Magnetic order and symmetry in the 2D semiconductor CrSBr
,”
Nano Lett.
21
(
8
),
3511
3517
(
2021
).
15.
K.
Chang
,
J.
Liu
,
H.
Lin
,
N.
Wang
,
K.
Zhao
,
A.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X.
Hu
,
W.
Duan
et al, “
Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
,”
Science
353
(
6296
),
274
278
(
2016
).
16.
J.
Xiao
,
H.
Zhu
,
Y.
Wang
,
W.
Feng
,
Y.
Hu
,
A.
Dasgupta
,
Y.
Han
,
Y.
Wang
,
D. A.
Muller
,
L. W.
Martin
et al, “
Intrinsic two-dimensional ferroelectricity with dipole locking
,”
Phys. Rev. Lett.
120
(
22
),
227601
(
2018
).
17.
Z.
Fei
,
W.
Zhao
,
T. A.
Palomaki
,
B.
Sun
,
M. K.
Miller
,
Z.
Zhao
,
J.
Yan
,
X.
Xu
, and
D. H.
Cobden
, “
Ferroelectric switching of a two-dimensional metal
,”
Nature
560
(
7718
),
336
339
(
2018
).
18.
Y.
Zhao
,
L.
Lin
,
Q.
Zhou
,
Y.
Li
,
S.
Yuan
,
Q.
Chen
,
S.
Dong
, and
J.
Wang
, “
Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides
,”
Nano Lett.
18
(
5
),
2943
2949
(
2018
).
19.
J.-J.
Zhang
,
L.
Lin
,
Y.
Zhang
,
M.
Wu
,
B. I.
Yakobson
, and
S.
Dong
, “
Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature
,”
J. Am. Chem. Soc.
140
(
30
),
9768
9773
(
2018
).
20.
T.
Zhong
,
X.
Li
,
M.
Wu
, and
J.-M.
Liu
, “
Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials
,”
Natl. Sci. Rev.
7
(
2
),
373
380
(
2020
).
21.
H.-Y.
Lyu
,
Z.
Zhang
,
J.-Y.
You
,
Q.-B.
Yan
, and
G.
Su
, “
Two-dimensional intercalating multiferroics with strong magnetoelectric coupling
,”
J. Phys. Chem. Lett.
13
(
49
),
11405
11412
(
2022
).
22.
Y.
Yang
,
J.
Ji
,
J.
Feng
,
S.
Chen
,
L.
Bellaiche
, and
H.
Xiang
, “
Two-dimensional organic–inorganic room-temperature multiferroics
,”
J. Am. Chem. Soc.
144
(
32
),
14907
14914
(
2022
).
23.
C.
Gong
,
E. M.
Kim
,
Y.
Wang
,
G.
Lee
, and
X.
Zhang
, “
Multiferroicity in atomic van der Waals heterostructures
,”
Nat. Commun.
10
(
1
),
2657
(
2019
).
24.
C.
Xu
,
P.
Chen
,
H.
Tan
,
Y.
Yang
,
H.
Xiang
, and
L.
Bellaiche
, “
Electric-field switching of magnetic topological charge in type-I multiferroics
,”
Phys. Rev. Lett.
125
(
3
),
037203
(
2020
).
25.
X.
Liu
,
A. P.
Pyatakov
, and
W.
Ren
, “
Magnetoelectric coupling in multiferroic bilayer VS2
,”
Phys. Rev. Lett.
125
(
24
),
247601
(
2020
).
26.
C.
Huang
,
J.
Zhou
,
H.
Sun
,
F.
Wu
,
Y.
Hou
, and
E.
Kan
, “
Toward room-temperature electrical control of magnetic order in multiferroic van der Waals materials
,”
Nano Lett.
22
(
13
),
5191
5197
(
2022
).
27.
S.
Shen
,
X.
Xu
,
B.
Huang
,
L.
Kou
,
Y.
Dai
, and
Y.
Ma
, “
Intrinsic triferroicity in a two-dimensional lattice
,”
Phys. Rev. B
103
(
14
),
144101
(
2021
).
28.
C.
Tang
,
L.
Zhang
,
S.
Sanvito
, and
A.
Du
, “
Enabling room-temperature triferroic coupling in dual transition-metal dichalcogenide monolayers via electronic asymmetry
,”
J. Am. Chem. Soc.
145
(
4
),
2485
2491
(
2023
).
29.
Y.
Lai
,
Z.
Song
,
Y.
Wan
,
M.
Xue
,
C.
Wang
,
Y.
Ye
,
L.
Dai
,
Z.
Zhang
,
W.
Yang
,
H.
Du
et al, “
Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6
,”
Nanoscale
11
(
12
),
5163
5170
(
2019
).
30.
N.
Miao
,
B.
Xu
,
L.
Zhu
,
J.
Zhou
, and
Z.
Sun
, “
2D intrinsic ferromagnets from van der Waals antiferromagnets
,”
J. Am. Chem. Soc.
140
(
7
),
2417
2420
(
2018
).
31.
Z.
Jiang
,
P.
Wang
,
J.
Xing
,
X.
Jiang
, and
J.
Zhao
, “
Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature
,”
ACS Appl. Mater. Interfaces
10
(
45
),
39032
39039
(
2018
).
32.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
34.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
36.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
(
3
),
1505
1509
(
1998
).
37.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
(
22
),
224106
(
2006
).
38.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
39.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
(
15
),
1787
1799
(
2006
).
40.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
(
7
),
4014
4022
(
1995
).
41.
R. D.
King-Smith
and
D.
Vanderbilt
, “
Theory of polarization of crystalline solids
,”
Phys. Rev. B
47
(
3
),
1651
1654
(
1993
).
42.
D.
Sheppard
,
P.
Xiao
,
W.
Chemelewski
,
D. D.
Johnson
, and
G.
Henkelman
, “
A generalized solid-state nudged elastic band method
,”
J. Chem. Phys.
136
(
7
),
074103
(
2012
).
43.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
(
9
),
094116
(
2010
).
44.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
(
10
),
2063
2070
(
2012
).
45.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y.-S.
Lee
,
I.
Souz
,
D.
Vanderbilt
, and
N.
Marzari
, “
An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
185
(
8
),
2309
2310
(
2014
).
46.
C.
Huang
,
J.
Feng
,
F.
Wu
,
D.
Ahmed
,
B.
Huang
,
H.
Xiang
,
K.
Deng
, and
E.
Kan
, “
Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors
,”
J. Am. Chem. Soc.
140
(
36
),
11519
11525
(
2018
).
47.
C.
Huang
,
J.
Guan
,
Q.
Li
,
F.
Wu
,
P.
Jena
, and
E.
Kan
, “
Built-in electric field control of magnetic coupling in van der Waals semiconductors
,”
Phys. Rev. B
103
(
14
),
L140410
(
2021
).
48.
S.
Chen
,
F.
Wu
,
Q.
Li
,
H.
Sun
,
J.
Ding
,
C.
Huang
, and
E.
Kan
, “
Prediction of room-temperature ferromagnetism in a two-dimensional direct band gap semiconductor
,”
Nanoscale
12
(
29
),
15670
15676
(
2020
).
49.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
(
1
),
14956
(
2017
).
50.
S.
Barraza-Lopez
,
B. M.
Fregoso
,
J. W.
Villanova
,
S. S. P.
Parkin
, and
K.
Chang
, “
Colloquium: physical properties of group-IV monochalcogenide monolayers
,”
Rev. Mod. Phys.
93
(
1
),
011001
(
2021
).
51.
M.
Wu
and
X. C.
Zeng
, “
Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues
,”
Nano Lett.
16
(
5
),
3236
3241
(
2016
).
52.
X.
Xuan
,
W.
Guo
, and
Z.
Zhang
, “
Ferroelasticity in two-dimensional tetragonal materials
,”
Phys. Rev. Lett.
129
(
4
),
047602
(
2022
).

Supplementary Material

You do not currently have access to this content.