Generating out-of-plane spins in sputtered materials holds immense potential for achieving field-free spin–orbit torque switching in practical applications and mass production. In this work, we present the detection of out-of-plane spins from single-layer ferromagnetic Co layers, which are visualized through helicity-dependent photomapping techniques. Our experiments have shown that out-of-plane spins are dependent on the magnetization direction, current density, and Co thickness. Our findings indicate that amorphous sputtered Co can be a promising candidate as an out-of-plane spin source material for industrial massive production.

1.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
et al,
Nature
476
,
189
193
(
2011
).
2.
D.
MacNeill
,
G. M.
Stiehl
,
M. H. D.
Guimaraes
,
R. A.
Buhrman
,
J.
Park
, and
D. C.
Ralph
,
Nat. Phys.
13
,
300
305
(
2017
).
3.
D.
MacNeill
,
G. M.
Stiehl
,
M. H. D.
Guimaraes
,
N. D.
Reynolds
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Phys. Rev. B
96
,
054450
(
2017
).
4.
S.-H. C.
Baek
,
V. P.
Amin
,
Y.-W.
Oh
et al,
Nat. Mater.
17
,
509
513
(
2018
).
5.
S.
Shi
,
S.
Liang
,
Z.
Zhu
et al,
Nat. Nanotechnol.
14
,
945
949
(
2019
).
6.
B.
Zhao
,
B.
Karpiak
,
D.
Khokhriakov
et al,
Adv. Mater.
32
,
2000818
(
2020
).
7.
S.
Shi
,
J.
Li
,
C.-H.
Hsu
et al,
Adv. Quantum Technol.
4
,
2100038
(
2021
).
8.
L.
Liu
,
C.
Zhou
,
X.
Shu
et al,
Nat. Nanotechnol.
16
,
277
282
(
2021
).
9.
X.
Chen
,
S.
Shi
,
G.
Shi
et al,
Nat. Mater.
20
,
800
804
(
2021
).
10.
Q.
Shao
,
P.
Li
,
L.
Liu
et al,
IEEE Trans. Magn.
57
,
1
(
2021
).
11.
C.
Song
,
R.
Zhang
,
L.
Liao
et al,
Prog. Mater. Sci.
118
,
100761
(
2021
).
12.
Q.
Xie
,
W.
Lin
,
S.
Sarkar
et al,
APL Mater.
9
,
051114
(
2021
).
13.
I.-H.
Kao
,
R.
Muzzio
,
H.
Zhang
et al,
Nat. Mater.
21
,
1029
1034
(
2022
).
14.
S.
Hu
,
D.-F.
Shao
,
H.
Yang
et al,
Nat. Commun.
13
,
4447
(
2022
).
15.
L.
Liu
,
T.
Moriyama
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
106
,
036601
(
2011
).
16.
Y.
Wang
,
P.
Deorani
,
X.
Qiu
,
J. H.
Kwon
, and
H.
Yang
,
Appl. Phys. Lett.
105
,
152412
(
2014
).
17.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Science
336
,
555
558
(
2012
).
18.
Y.
Wang
,
P.
Deorani
,
K.
Banerjee
,
N.
Koirala
,
M.
Brahlek
,
S.
Oh
, and
H.
Yang
,
Phys. Rev. Lett.
114
,
257202
(
2015
).
19.
J.
Han
,
A.
Richardella
,
S. A.
Siddiqui
,
J.
Finley
,
N.
Samarth
, and
L.
Liu
,
Phys. Rev. Lett.
119
,
077702
(
2017
).
20.
L.
Liu
,
C.
Zhou
,
T.
Zhao
et al,
Nat. Commun.
13
,
3539
(
2022
).
21.
C.
Safranski
,
E. A.
Montoya
, and
I. N.
Krivorotov
,
Nat. Nanotechnol.
14
,
27
30
(
2019
).
22.
M.
Aoki
,
E.
Shigematsu
,
R.
Ohshima
,
T.
Shinjo
,
M.
Shiraishi
, and
Y.
Ando
,
Phys. Rev. B
105
,
144407
(
2022
).
23.
Z.
Zheng
,
Y.
Zhang
,
V.
Lopez-Dominguez
et al,
Nat. Commun.
12
,
4555
(
2021
).
24.
C. O.
Pauyac
,
M.
Chshiev
,
A.
Manchon
, and
S. A.
Nikolaev
,
Phys. Rev. Lett.
120
,
176802
(
2018
).
25.
V. P.
Amin
,
J.
Zemen
, and
M. D.
Stiles
,
Phys. Rev. Lett.
121
,
136805
(
2018
).
26.
W.
Wang
,
T.
Wang
,
V. P.
Amin
et al,
Nat. Nanotechnol.
14
,
819
824
(
2019
).
27.
Q.
Fu
,
L.
Liang
,
W.
Wang
et al,
Phys. Rev. B
105
,
224417
(
2022
).
28.
N.
Okamoto
,
H.
Kurebayashi
,
T.
Trypiniotis
et al,
Nat. Mater.
13
,
932
937
(
2014
).
29.
Y.
Liu
,
J.
Besbas
,
Y.
Wang
et al,
Nat. Commun.
9
,
2492
(
2018
).
30.
Y.
Liu
,
Y.
Liu
,
M.
Chen
et al,
Phys. Rev. Appl.
12
,
064046
(
2019
).
31.
H.
Yang
,
E.
Schmoranzerová
,
P.
Jang
et al,
Nat. Commun.
13
,
6790
(
2022
).
32.
L.
Fallarino
,
V.
Sluka
,
B.
Kardasz
,
M.
Pinarbasi
,
A.
Berger
, and
A. D.
Kent
,
Appl. Phys. Lett.
109
,
082401
(
2016
).

Supplementary Material

You do not currently have access to this content.