As an ultrawide bandgap (∼4.1 eV) semiconductor, single crystalline SrSnO3 (SSO) has promising electrical properties for applications in power electronics and transparent conductors. The device performance can be limited by heat dissipation issues. However, a systematic study detailing its thermal transport properties remains elusive. This work studies the temperature-dependent thermal properties of a single crystalline SSO thin film prepared with hybrid molecular beam epitaxy. By combining time-domain thermoreflectance and Debye–Callaway modeling, physical insight into thermal transport mechanisms is provided. At room temperature, the 350-nm SSO film has a thermal conductivity of 4.4 W m−1 K−1, ∼60% lower than those of other perovskite oxides (SrTiO3, BaSnO3) with the same ABO3 structural formula. This difference is attributed to the low zone-boundary frequency of SSO, resulting from its distorted orthorhombic structure with tilted octahedra. At high temperatures, the thermal conductivity of SSO decreases with temperature following a ∼T−0.54 dependence, weaker than the typical T−1 trend dominated by the Umklapp scattering. This work not only reveals the fundamental mechanisms of thermal transport in single crystalline SSO but also sheds light on the thermal design and optimization of SSO-based electronic applications.

1.
H. J.
Kim
,
U.
Kim
,
T. H.
Kim
,
J.
Kim
,
H. M.
Kim
,
B.-G.
Jeon
,
W.-J.
Lee
,
H. S.
Mun
,
K. T.
Hong
, and
J.
Yu
,
Phys. Rev. B
86
(
16
),
165205
(
2012
).
2.
H.
Paik
,
Z.
Chen
,
E.
Lochocki
,
A.
Seidner
,
A.
Verma
,
N.
Tanen
,
J.
Park
,
M.
Uchida
,
S.
Shang
, and
B.-C.
Zhou
,
APL Mater.
5
(
11
),
116107
(
2017
).
3.
A.
Prakash
,
P.
Xu
,
A.
Faghaninia
,
S.
Shukla
,
J. W.
Ager
,
C. S.
Lo
, and
B.
Jalan
,
Nat. Commun.
8
(
1
),
15167
(
2017
).
4.
W.-J.
Lee
,
H. J.
Kim
,
J.
Kang
,
D. H.
Jang
,
T. H.
Kim
,
J. H.
Lee
, and
K. H.
Kim
,
Annu. Rev. Mater. Res.
47
,
391
(
2017
).
5.
T.
Truttmann
,
A.
Prakash
,
J.
Yue
,
T. E.
Mates
, and
B.
Jalan
,
Appl. Phys. Lett.
115
(
15
),
152103
(
2019
).
6.
T.
Wang
,
A.
Prakash
,
Y.
Dong
,
T.
Truttmann
,
A.
Bucsek
,
R.
James
,
D. D.
Fong
,
J.-W.
Kim
,
P. J.
Ryan
, and
H.
Zhou
,
ACS Appl. Mater. Interfaces
10
(
50
),
43802
(
2018
).
7.
H.
Mizoguchi
,
H. W.
Eng
, and
P. M.
Woodward
,
Inorg. Chem.
43
(
5
),
1667
(
2004
).
8.
A.
Prakash
,
N. F.
Quackenbush
,
H.
Yun
,
J.
Held
,
T.
Wang
,
T.
Truttmann
,
J. M.
Ablett
,
C.
Weiland
,
T.-L.
Lee
, and
J. C.
Woicik
,
Nano Lett.
19
(
12
),
8920
(
2019
).
9.
W.
Zhang
,
J.
Tang
, and
J.
Ye
,
J. Mater. Res.
22
(
7
),
1859
(
2007
).
10.
T. K.
Truttmann
,
J.-J.
Zhou
,
I.-T.
Lu
,
A. K.
Rajapitamahuni
,
F.
Liu
,
T. E.
Mates
,
M.
Bernardi
, and
B.
Jalan
,
Commun. Phys.
4
(
1
),
241
(
2021
).
11.
V. S. K.
Chaganti
,
A.
Prakash
,
J.
Yue
,
B.
Jalan
, and
S. J.
Koester
,
IEEE Electron Device Lett.
39
(
9
),
1381
(
2018
).
12.
L.
Chen
,
Y.
Zhang
,
X.
Wang
,
B.
Jalan
,
S.
Chen
, and
Y.
Hou
,
J. Phys. Chem. C
122
(
21
),
11482
(
2018
).
13.
A.
Prakash
,
P.
Xu
,
X.
Wu
,
G.
Haugstad
,
X.
Wang
, and
B.
Jalan
,
J. Mater. Chem. C.
5
(
23
),
5730
(
2017
).
14.
C.
Yu
,
M. L.
Scullin
,
M.
Huijben
,
R.
Ramesh
, and
A.
Majumdar
,
Appl. Phys. Lett.
92
(
19
),
191911
(
2008
).
15.
D.-W.
Oh
,
J.
Ravichandran
,
C.-W.
Liang
,
W.
Siemons
,
B.
Jalan
,
C. M.
Brooks
,
M.
Huijben
,
D. G.
Schlom
,
S.
Stemmer
, and
L. W.
Martin
,
Appl. Phys. Lett.
98
(
22
),
221904
(
2011
).
16.
E.
Langenberg
,
E.
Ferreiro-Vila
,
V.
Leborán
,
A.
Fumega
,
V.
Pardo
, and
F.
Rivadulla
,
APL Mater.
4
(
10
),
104815
(
2016
).
17.
X.
Wu
,
J.
Walter
,
T.
Feng
,
J.
Zhu
,
H.
Zheng
,
J. F.
Mitchell
,
N.
Biškup
,
M.
Varela
,
X.
Ruan
, and
C.
Leighton
,
Adv. Funct. Mater.
27
(
47
),
1704233
(
2017
).
18.
M.
Yasukawa
,
K.
Ueda
,
S.
Fujitsu
, and
H.
Hosono
,
Ceram. Int.
43
(
13
),
9653
(
2017
).
19.
T.
Wang
,
L. R.
Thoutam
,
A.
Prakash
,
W.
Nunn
,
G.
Haugstad
, and
B.
Jalan
,
Phys. Rev. Mater.
1
(
6
),
061601
(
2017
).
20.
E. H.
Mountstevens
,
J. P.
Attfield
, and
S. A.
Redfern
,
J. Phys. Condens. Matter.
15
(
49
),
8315
(
2003
).
21.
T. K.
Truttmann
,
F.
Liu
,
J.
Garcia-Barriocanal
,
R. D.
James
, and
B.
Jalan
,
ACS Appl. Electron. Mater.
3
(
3
),
1127
(
2021
).
22.
S.
Ruddlesden
and
P.
Popper
,
Acta Cryst.
10
(
8
),
538
(
1957
).
23.
S.
Ruddlesden
and
P.
Popper
,
Acta Cryst.
11
(
1
),
54
(
1958
).
24.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
(
2004
).
25.
J.
Zhu
,
H.
Park
,
J. Y.
Chen
,
X.
Gu
,
H.
Zhang
,
S.
Karthikeyan
,
N.
Wendel
,
S. A.
Campbell
,
M.
Dawber
, and
X.
Du
,
Adv. Electron. Mater.
2
(
5
),
1600040
(
2016
).
26.
Y.
Zhang
,
Q.
Su
,
J.
Zhu
,
S.
Koirala
,
S. J.
Koester
, and
X.
Wang
,
Appl. Phys. Lett.
116
(
20
),
202101
(
2020
).
27.
Y.
Zhang
,
M. A.
Eslamisaray
,
T.
Feng
,
U.
Kortshagen
, and
X.
Wang
,
Nanoscale Adv.
4
(
1
),
87
(
2022
).
28.
J.
Zhu
,
Y.
Zhu
,
X.
Wu
,
H.
Song
,
Y.
Zhang
, and
X.
Wang
,
Appl. Phys. Lett.
108
(
23
),
231903
(
2016
).
29.
X.
Wu
,
B. L.
Greenberg
,
Y.
Zhang
,
J. T.
Held
,
D.
Huang
,
J. G.
Barriocanal
,
K. A.
Mkhoyan
,
E. S.
Aydil
,
U.
Kortshagen
, and
X.
Wang
,
Phys. Rev. Mater.
4
(
8
),
086001
(
2020
).
30.
J.
Zhu
,
T.
Feng
,
S.
Mills
,
P.
Wang
,
X.
Wu
,
L.
Zhang
,
S. T.
Pantelides
,
X.
Du
, and
X.
Wang
,
ACS Appl. Mater. Interfaces
10
(
47
),
40740
(
2018
).
31.
T.
Feng
,
X.
Wu
,
X.
Yang
,
P.
Wang
,
L.
Zhang
,
X.
Du
,
X.
Wang
, and
S. T.
Pantelides
,
Adv. Funct. Mater.
30
(
5
),
1907286
(
2020
).
32.
P.
Jiang
,
B.
Huang
, and
Y. K.
Koh
,
Rev. Sci. Instrum.
87
(
7
),
075101
(
2016
).
33.
Y.
Zhang
,
W. M.
Postiglione
,
R.
Xie
,
C.
Zhang
,
H.
Zhou
,
V.
Chaturvedi
,
K.
Heltemes
,
H.
Zhou
,
T.
Feng
, and
C.
Leighton
,
Nat. Commun.
14
(
1
),
2626
(
2023
).
34.
G. T.
Hohensee
,
W.-P.
Hsieh
,
M. D.
Losego
, and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
(
11
),
114902
(
2012
).
35.
D.
Ditmars
,
C.
Plint
, and
R.
Shukla
,
Int. J. Thermophys.
6
(
5
),
499
(
1985
).
36.
Y.
Touloukian
and
E.
Buyco
,
Thermophysical Properties of Matter-The TPRC Data Series. Volume 5. Specific Heat-Nonmetallic Solids
(
Thermophysical and Electronic Properties Information Analysis Center
,
Lafayette, IN
,
1970
).
37.
D.
Cherrad
,
M.
Maouche
,
M.
Maamache
, and
L.
Krache
,
Phys. B: Condens. Matter
406
(
14
),
2714
(
2011
).
38.
A.
Negi
,
A.
Rodriguez
,
X.
Zhang
,
A. H.
Comstock
,
C.
Yang
,
D.
Sun
,
X.
Jiang
,
D.
Kumah
,
M.
Hu
, and
J.
Liu
,
Adv. Sci.
10
,
2301273
(
2023
).
39.
X.
Wang
,
V.
Ho
,
R. A.
Segalman
, and
D. G.
Cahill
,
Macromolecules
46
(
12
),
4937
(
2013
).
40.
J.
Tiwari
and
T.
Feng
,
Phys. Rev. Mater.
7
(
6
),
065001
(
2023
).
41.
X.
Wang
,
Z.
Gao
,
G.
Zhu
,
J.
Ren
,
L.
Hu
,
J.
Sun
,
X.
Ding
,
Y.
Xia
, and
B.
Li
,
Phys. Rev. B
107
(
21
),
214308
(
2023
).
42.
G. A.
Slack
,
Phys. Rev.
126
(
2
),
427
(
1962
).
43.
D.
Morelli
,
J.
Heremans
, and
G.
Slack
,
Phys. Rev. B
66
(
19
),
195304
(
2002
).
44.
P.
Jiang
,
X.
Qian
,
X.
Li
, and
R.
Yang
,
Appl. Phys. Lett.
113
(
23
),
232105
(
2018
).
45.
A.
Beattie
and
G.
Samara
,
J. Appl. Phys.
42
(
6
),
2376
(
1971
).
46.
W.
Stirling
,
J. Phys. C: Solid State Phys.
5
(
19
),
2711
(
1972
).
47.
R.
Wilson
,
B. A.
Apgar
,
W.-P.
Hsieh
,
L. W.
Martin
, and
D. G.
Cahill
,
Phys. Rev. B
91
(
11
),
115414
(
2015
).
48.
M. A.
Sattar
,
M.
Benkraouda
, and
N.
Amrane
,
Phys. B: Condens. Matter
590
,
412216
(
2020
).
49.
T.
Wang
,
K. C.
Pitike
,
Y.
Yuan
,
S. M.
Nakhmanson
,
V.
Gopalan
, and
B.
Jalan
,
APL Mater.
4
(
12
),
126111
(
2016
).
50.
S.
Suzuki
,
A.
Honda
,
N.
Iwaji
,
S. I.
Higai
,
A.
Ando
,
H.
Takagi
,
H.
Kasatani
, and
K.
Deguchi
,
Phys. Rev. B
86
(
6
),
060102
(
2012
).
51.
A.
Faghaninia
,
J. W.
Ager
III
, and
C. S.
Lo
,
Phys. Rev. B
91
(
23
),
235123
(
2015
).
52.
N. H.
Chan
,
R.
Sharma
, and
D. M.
Smyth
,
J. Electrochem. Soc.
128
(
8
),
1762
(
1981
).
53.
P.
Ambwani
,
P.
Xu
,
G.
Haugstad
,
J.
Jeong
,
R.
Deng
,
K.
Mkhoyan
,
B.
Jalan
, and
C.
Leighton
,
J. Appl. Phys.
120
(
5
),
055704
(
2016
).
54.
A.
Bhalla
,
R.
Guo
, and
R.
Roy
,
Mater. Res. Innov.
4
(
1
),
3
(
2000
).
55.
H.
Mizoguchi
,
P. M.
Woodward
,
C.-H.
Park
, and
D. A.
Keszler
,
J. Am. Chem. Soc.
126
(
31
),
9796
(
2004
).
56.
B.
Veličkov
,
V.
Kahlenberg
,
R.
Bertram
, and
M.
Bernhagen
,
Z. Kristallogr.
222
(
9
),
466
(
2007
).

Supplementary Material

You do not currently have access to this content.