Over the recent decade, topological insulators, originating from the condensed matter physics, have resided at the frontier in the field of acoustics owing to their novel topological properties for manipulating robust wave propagation, which have also opened an intriguing landscape for potential applications. At the meantime, gradually slowing down acoustic waves with metamaterials allows temporary storage of sound, leading to the exploration of so-called trapped rainbow. However, most of the current studies are reported in a topological trivial context with complex structures, and it is hitherto still a challenge to obtain the high-efficient acoustic rainbow trapping effect in a straightforward setup. Here, we propose an acoustic gradient topological insulator in the one-dimensional system to realize a highly efficient rainbow trapping device. Based on the acoustic analogous Su–Schrieffer–Heeger model, we tune the eigenfrequencies of the topological interface states through modulating the neck widths of Helmholtz resonators. The experimentally measured pressure spectra clearly show that the proposed structure could tightly trap the broad-band sound waves at the target spatial positions. Our proposal may provide versatile possibilities for the design of topological acoustic devices.

1.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
2.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
(
2011
).
3.
S. D.
Huber
, “
Topological mechanics
,”
Nat. Phys.
12
,
621
623
(
2016
).
4.
A. B.
Khanikaev
and
G.
Shvets
, “
Two-dimensional topological photonics
,”
Nat. Photonics
11
,
763
773
(
2017
).
5.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
6.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
374
(
2017
).
7.
S.
Yves
,
R.
Fleury
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale
,”
New J. Phys.
19
,
075003
(
2017
).
8.
Z.
Zhang
,
Q.
Wei
,
Y.
Cheng
,
T.
Zhang
,
D.
Wu
, and
X.
Liu
, “
Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice
,”
Phys. Rev. Lett.
118
,
084303
(
2017
).
9.
X.
Zhang
,
M.
Xiao
,
Y.
Cheng
,
M.-H.
Lu
, and
J.
Christensen
, “
Topological sound
,”
Commun. Phys.
1
,
97
(
2018
).
10.
P.
Gao
,
D.
Torrent
,
F.
Cervera
,
P.
San-Jose
,
J.
Sánchez-Dehesa
, and
J.
Christensen
, “
Majorana-like zero modes in Kekulé distorted sonic lattices
,”
Phys. Rev. Lett.
123
,
196601
(
2019
).
11.
Y.
Yang
,
J.
Lu
,
M.
Yan
,
X.
Huang
,
W.
Deng
, and
Z.
Liu
, “
Hybrid-order topological insulators in a phononic crystal
,”
Phys. Rev. Lett.
126
,
156801
(
2021
).
12.
L.-Y.
Zheng
and
J.
Christensen
, “
Dirac hierarchy in acoustic topological insulators
,”
Phys. Rev. Lett.
127
,
156401
(
2021
).
13.
Z.
Zhang
,
P.
Delplace
, and
R.
Fleury
, “
Superior robustness of anomalous non-reciprocal topological edge states
,”
Nature
598
,
293
297
(
2021
).
14.
X.
Fan
,
T.
Xia
,
H.
Qiu
,
Q.
Zhang
, and
C.
Qiu
, “
Tracking valley topology with synthetic Weyl paths
,”
Phys. Rev. Lett.
128
,
216403
(
2022
).
15.
H.
Xue
,
Y.
Yang
, and
B.
Zhang
, “
Topological acoustics
,”
Nat. Rev. Mater
7
,
974
990
(
2022
).
16.
H.
Xue
,
Y.
Yang
,
F.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Acoustic higher-order topological insulator on a kagome lattice
,”
Nat. Mater.
18
,
108
112
(
2019
).
17.
Z.
Zhang
,
M.
Rosendo López
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Non-Hermitian sonic second-order topological insulator
,”
Phys. Rev. Lett.
122
,
195501
(
2019
).
18.
Z.
Zhang
,
H.
Long
,
C.
Liu
,
C.
Shao
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Deep-subwavelength holey acoustic second-order topological insulators
,”
Adv. Mater.
31
,
1904682
(
2019
).
19.
X.
Ni
,
M.
Li
,
M.
Weiner
,
A.
Alù
, and
A. B.
Khanikaev
, “
Demonstration of a quantized acoustic octupole topological insulator
,”
Nat. Commun.
11
,
2108
(
2020
).
20.
Y.
Qi
,
C.
Qiu
,
M.
Xiao
,
H.
He
,
M.
Ke
, and
Z.
Liu
, “
Acoustic realization of quadrupole topological insulators
,”
Phys. Rev. Lett.
124
,
206601
(
2020
).
21.
S. A. A.
Ghorashi
,
T.
Li
, and
T. L.
Hughes
, “
Higher-order Weyl semimetals
,”
Phys. Rev. Lett.
125
,
266804
(
2020
).
22.
B.
Xie
,
H.-X.
Wang
,
X.
Zhang
,
P.
Zhan
,
J.-H.
Jiang
,
M.
Lu
, and
Y.
Chen
, “
Higher-order band topology
,”
Nat. Rev. Phys.
3
,
520
532
(
2021
).
23.
Z.-G.
Chen
,
W.
Zhu
,
Y.
Tan
,
L.
Wang
, and
G.
Ma
, “
Acoustic realization of a four-dimensional higher-order Chern insulator and boundary-modes engineering
,”
Phys. Rev. X
11
,
011016
(
2021
).
24.
Z.
Zhang
,
Y.
Tian
,
Y.
Cheng
,
Q.
Wei
,
X.
Liu
, and
J.
Christensen
, “
Topological acoustic delay line
,”
Phys. Rev. Appl.
9
,
034032
(
2018
).
25.
Z.
Zhang
,
Y.
Tian
,
Y.
Wang
,
S.
Gao
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Directional acoustic antennas based on valley-Hall topological insulators
,”
Adv. Mater.
30
,
1803229
(
2018
).
26.
J.-P.
Xia
,
D.
Jia
,
H.-X.
Sun
,
S.-Q.
Yuan
,
Y.
Ge
,
Q.-R.
Si
, and
X.-J.
Liu
, “
Programmable coding acoustic topological insulator
,”
Adv. Mater.
30
,
1805002
(
2018
).
27.
B.
Hu
,
Z.
Zhang
,
H.
Zhang
,
L.
Zheng
,
W.
Xiong
,
Z.
Yue
,
X.
Wang
,
J.
Xu
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Non-Hermitian topological whispering gallery
,”
Nature
597
,
655
659
(
2021
).
28.
K. L.
Tsakmakidis
,
A. D.
Boardman
, and
O.
Hess
, “
‘Trapped rainbow’ storage of light in metamaterials
,”
Nature
450
,
397
401
(
2007
).
29.
Q.
Gan
,
Y.
Gao
,
K.
Wagner
,
D.
Vezenov
,
Y. J.
Ding
, and
F. J.
Bartoli
, “
Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
5169
5173
(
2011
).
30.
M. S.
Jang
and
H.
Atwater
, “
Plasmonic rainbow trapping structures for light localization and spectrum splitting
,”
Phys. Rev. Lett.
107
,
207401
(
2011
).
31.
J. M. D.
Ponti
,
A.
Colombi
,
R.
Ardito
,
F.
Braghin
,
A.
Corigliano
, and
R. V.
Craster
, “
Graded elastic metasurface for enhanced energy harvesting
,”
New J. Phys.
22
,
013013
(
2020
).
32.
G. J.
Chaplain
,
J. M.
De Ponti
,
G.
Aguzzi
,
A.
Colombi
, and
R. V.
Craster
, “
Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems
,”
Phys. Rev. Appl.
14
,
054035
(
2020
).
33.
B.
Ungureanu
,
M. P.
Makwana
,
R. V.
Craster
, and
S.
Guenneau
, “
Localizing elastic edge waves via the topological rainbow effect
,”
Phys. Rev. Appl.
15
,
014057
(
2021
).
34.
C.
Lu
,
C.
Wang
,
M.
Xiao
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Topological rainbow concentrator based on synthetic dimension
,”
Phys. Rev. Lett.
126
,
113902
(
2021
).
35.
C.
Lu
,
Y.-Z.
Sun
,
C.
Wang
,
H.
Zhang
,
W.
Zhao
,
X.
Hu
,
M.
Xiao
,
W.
Ding
,
Y.-C.
Liu
, and
C. T.
Chan
, “
On-chip nanophotonic topological rainbow
,”
Nat. Commun.
13
,
2586
(
2022
).
36.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater
1
,
16001
(
2016
).
37.
V.
Romero-García
,
R.
Picó
,
A.
Cebrecos
,
V. J.
Sánchez-Morcillo
, and
K.
Staliunas
, “
Enhancement of sound in chirped sonic crystals
,”
Appl. Phys. Lett.
102
,
091906
(
2013
).
38.
A.
Arreola-Lucas
,
G.
Báez
,
F.
Cervera
,
A.
Climente
,
R. A.
Méndez-Sánchez
, and
J.
Sánchez-Dehesa
, “
Experimental evidence of rainbow trapping and bloch oscillations of torsional waves in chirped metallic beams
,”
Sci. Rep.
9
,
1860
(
2019
).
39.
X.
Ni
,
Y.
Wu
,
Z.-G.
Chen
,
L.-Y.
Zheng
,
Y.-L.
Xu
,
P.
Nayar
,
X.-P.
Liu
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Acoustic rainbow trapping by coiling up space
,”
Sci. Rep.
4
,
7038
(
2014
).
40.
C.
Zhou
,
B.
Yuan
,
Y.
Cheng
, and
X.
Liu
, “
Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures
,”
Appl. Phys. Lett.
108
,
063501
(
2016
).
41.
M.
Xiao
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Surface impedance and bulk band geometric phases in one-dimensional systems
,”
Phys. Rev. X
4
,
021017
(
2014
).
42.
Y.
Meng
,
H.
Xiang
,
R.-Y.
Zhang
,
X.
Wu
,
D.
Han
,
C. T.
Chan
, and
W.
Wen
, “
Topological interface states in multiscale spoof-insulator-spoof waveguides
,”
Opt. Lett.
41
,
3698
3701
(
2016
).
43.
Z.
Zhang
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Subwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterials
,”
Phys. Rev. B
99
,
224104
(
2019
).

Supplementary Material

You do not currently have access to this content.