Acoustofluidics is a technique that utilizes the forces produced by ultrasonic waves and fluid flows to manipulate cells or nano-/microparticles within microfluidic systems. In this study, we demonstrate the feasibility of performing the Raman analysis of living human erythrocytes (Erys) within a 3D-printed acoustofluidic device designed as a half-wavelength multilayer resonator. Experiments show that a stable and orderly Ery aggregate can be formed in the pressure nodal plane at the resonator's mid-height. This has a significant potential for improving the applicability of Raman spectroscopy in single Ery analysis, as evidenced by the acquisition of the spectrum of healthy and pre-heated Erys without substrate interference. Moreover, principal component analysis applied on the obtained spectra confirms the correct Ery group identification. Our study demonstrates that 3D-printed acoustofluidic devices can improve the accuracy and sensitivity of Raman spectroscopy in blood investigations, with potential clinical applications for noninvasive disease diagnosis and treatment monitoring.

1.
B. W.
Drinkwater
,
Appl. Phys. Lett.
117
,
180501
(
2020
).
2.
J.
Rufo
,
F.
Cai
,
J.
Friend
et al,
Nat. Rev. Methods Primers
2
,
30
(
2022
).
3.
G. R.
Torr
,
Am. J. Phys.
52
,
402
(
1984
).
4.
M.
Baudoin
and
J.-L.
Thomas
,
Ann. Rev. Fluid Mech.
52
,
205
(
2020
).
5.
L. P.
Gor'kov
,
Sov. Phys.-Dokl.
6
,
773
(
1962
).
7.
L.
Zhang
and
P. L.
Marston
,
Phys. Rev. E
84
,
65601
(
2011
).
8.
Z.
Gong
and
M.
Baudoin
,
J. Acoust. Soc. Am.
148
,
3131
(
2020
).
9.
E. B.
Lima
,
J. P.
Leão-Neto
,
A. S.
Marques
,
G. C.
Silva
,
J. H.
Lopes
, and
G. T.
Silva
,
Phys. Rev. Appl.
13
,
064048
(
2020
).
10.
S.
Sepehrirahnama
and
S.
Oberst
,
Front. Phys.
10
,
897648
(
2022
).
11.
T.
Tang
,
G. T.
Silva
,
L.
Huang
, and
X.
Han
,
Phys. Rev. E
106
,
045108
(
2022
).
12.
J. P.
Leão-Neto
,
J. H.
Lopes
, and
G. T.
Silva
,
J. Acoust. Soc. Am.
147
,
2177
(
2020
).
13.
J. P.
Leão-Neto
,
M.
Hoyos
,
J.-L.
Aider
, and
G. T.
Silva
,
J. Acoust. Soc. Am.
149
,
285
(
2021
).
14.
E. B.
Lima
and
G. T.
Silva
,
J. Acoust. Soc. Am.
150
,
376
384
(
2021
).
15.
J. J.
Hawkes
and
W. T.
Coakley
,
Sens. Actuators B Chem.
75
,
213
(
2001
).
16.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
,
Chem. Soc. Rev.
36
,
492
(
2007
).
17.
J.
Lei
,
F.
Cheng
,
K.
Li
,
G.
Liu
,
Y.
Zhang
,
Z.
Guo
, and
Y.
Zhang
,
Appl. Phys. Lett.
117
,
224101
(
2020
).
18.
J.
Lei
,
F.
Cheng
,
K.
Li
, and
Z.
Guo
,
Appl. Phys. Lett.
116
,
033104
(
2020
).
19.
J.
Luzuriaga
,
P.
Carreras
,
M.
Candil
,
D.
Bazou
, and
I.
González
,
Front. Phys.
10
,
920687
(
2022
).
20.
S.
Oberti
,
A.
Neild
, and
J.
Dual
,
J. Acoust. Soc. Am.
121
,
778
(
2007
).
21.
G. T.
Silva
,
J. H.
Lopes
,
J. P.
Leão-Neto
,
M. K.
Nichols
, and
B. W.
Drinkwater
,
Phys. Rev. Appl.
11
,
054044
(
2019
).
22.
J.
Lei
,
F.
Cheng
,
G.
Liu
,
K.
Li
, and
Z.
Guo
,
Appl. Phys. Lett.
117
,
184101
(
2020
).
23.
J. F.
Spengler
,
W. T.
Coakley
, and
K. T.
Christensen
,
AIChE J.
49
,
2773
(
2003
).
24.
P.
Glynne-Jones
,
C. E.
Demore
,
C.
Ye
,
Y.
Qiu
,
S.
Cochran
, and
M.
Hill
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
,
1258
(
2012
).
25.
S.
Gutiérrez-Ramos
,
M.
Hoyos
, and
J.
Ruiz-Suárez
,
Sci. Rep.
8
,
4668
(
2018
).
26.
H. D. A.
Santos
,
A. E.
Silva
,
G. C.
Silva
,
E. B.
Lima
,
A. S.
Marques
,
M. S.
Alexandre-Moreira
,
A. C.
Queiroz
,
C.
Jacinto
,
J. H.
Lopes
,
U.
Rocha
, and
G. T.
Silva
,
Adv. Eng. Mater.
23
,
2100552
(
2021
).
27.
L.
Bellebon
,
H. R.
Sugier
,
J.
Larghero
,
J.
Peltzer
,
C.
Martinaud
,
M.
Hoyos
, and
J.-L.
Aider
,
Front. Phys.
10
,
921155
(
2022
).
28.
S. Z.
Hoque
and
A. K.
Sen
,
Phys. Fluids
32
,
072004
(
2020
).
29.
D.
Saeidi
,
M.
Saghafian
,
S.
Haghjooy Javanmard
, and
M.
Wiklund
,
Micromachines
11
,
152
(
2020
).
30.
J.
Dybas
,
F. C.
Alcicek
,
A.
Wajda
,
M.
Kaczmarska
,
A.
Zimna
,
K.
Bulat
,
A.
Blat
,
T.
Stepanenko
,
T.
Mohaissen
,
E.
Szczesny-Malysiak
,
D.
Perez-Guaita
,
B. R.
Wood
, and
K. M.
Marzec
,
Trends Anal. Chem.
146
,
116481
(
2022
).
31.
M. V. S.
Sales
,
R. C.
Silva-Filho
,
M. M.
Silva
,
J. L.
Rocha
,
R. O.
Freire
,
E. L. L.
Tanabe
,
E. C. O.
Silva
,
E. J. S.
Fonseca
,
I. M.
Figueiredo
,
U.
Rocha
,
J. C. C.
Santos
, and
A. C. R.
Leite
,
J. Trace Elem. Med. Biol.
71
,
126928
(
2022
).
32.
M. J.
Ruedas-Rama
,
A.
Domínguez-Vidal
,
S.
Radel
, and
B.
Lendl
,
Anal. Chem.
79
,
7853
(
2007
).
33.
K.
Wieland
,
S.
Tauber
,
C.
Gasser
,
L. A.
Rettenbacher
,
L.
Lux
,
S.
Radel
, and
B.
Lendl
,
Anal. Chem.
91
,
14231
(
2019
).
34.
T.
Xu
,
Y.
Luo
,
C.
Liu
,
X.
Zhang
, and
S.
Wang
,
Anal. Chem.
92
,
7816
(
2020
).
35.
V. O.
Baron
,
M.
Chen
,
B.
Hammarstrom
,
R. J. H.
Hammond
,
P.
Glynne-Jones
,
S. H.
Gillespie
, and
K.
Dholakia
,
Commun. Biol.
3
,
236
(
2020
).
36.
N.
Hao
,
Z.
Pei
,
P.
Liu
,
H.
Bachman
,
T. D.
Naquin
,
P.
Zhang
,
J.
Zhang
,
L.
Shen
,
S.
Yang
,
K.
Yang
,
S.
Zhao
, and
T. J.
Huang
,
Small
16
,
2005179
(
2020
).
37.
L.
Chang
,
Y.
Yan
, and
L.
Wang
,
Transfus. Med. Rev.
34
,
75
(
2020
).
38.
G.
Rusciano
,
A. C.
de Luca
,
G.
Pesce
, and
A.
Sasso
,
Sensors
8
,
7818
(
2008
).
39.
Y.
Singh
,
A.
Chowdhury
,
C.
Mukherjee
,
R.
Dasgupta
, and
S. K.
Majumder
,
J. Biophotonics
12
,
e201800246
(
2019
).
40.
O.
Slatinskaya
,
O.
Luneva
,
L.
Deev
et al,
Biophysics
66
,
797
(
2021
).
41.
A.
Pavlic
,
P.
Nagpure
,
L.
Ermanni
, and
J.
Dual
,
Phys. Rev. E
106
,
015105
(
2022
).
42.
G. T.
Silva
and
H.
Bruus
,
Phys. Rev. E
90
,
063007
(
2014
).
43.
G. T.
Silva
,
L.
Tian
,
A.
Franklin
,
X.
Wang
,
X.
Han
,
S.
Mann
, and
B. W.
Drinkwater
,
Phys. Rev. E
99
,
063002
(
2019
).
44.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
,
Biomicrofluidics
8
,
034109
(
2014
).
45.
Y.
Liu
and
F.
Xin
,
Mech. Mater.
178
,
104565
(
2023
).

Supplementary Material

You do not currently have access to this content.