Fluctuations in electric fields can change the position of a gate-defined quantum dot (QD) in a semiconductor heterostructure. In the presence of magnetic field gradient, these stochastic shifts of electron's wavefunction lead to fluctuations of electron's spin splitting. The resulting spin dephasing due to charge noise limits the coherence times of spin qubits in isotopically purified Si/SiGe quantum dots. We investigate the spin splitting noise caused by such a process due to microscopic motion of charges at the semiconductor-oxide interface. We compare effects of isotropic and planar displacement of the charges and estimate their densities and typical displacement magnitudes that can reproduce experimentally observed spin splitting noise spectra. We predict that for a defect density of 1010 cm−2, visible correlations between noises in spin splitting and in energy of electron's ground state in the quantum dot are expected.

1.
K. W.
Chan
,
W.
Huang
,
C. H.
Yang
,
J. C.
Hwang
,
B.
Hensen
,
T.
Tanttu
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Laucht
,
A.
Morello
, and
A. S.
Dzurak
, “
Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy
,”
Phys. Rev. Appl.
10
,
1
(
2018
).
2.
J.
Yoneda
,
K.
Takeda
,
T.
Otsuka
,
T.
Nakajima
,
M. R.
Delbecq
,
G.
Allison
,
T.
Honda
,
T.
Kodera
,
S.
Oda
,
Y.
Hoshi
,
N.
Usami
,
K. M.
Itoh
, and
S.
Tarucha
, “
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
,”
Nat. Nanotechnol.
13
,
102
(
2018
).
3.
T.
Tanttu
,
B.
Hensen
,
K. W.
Chan
,
C. H.
Yang
,
W. W.
Huang
,
M.
Fogarty
,
F.
Hudson
,
K.
Itoh
,
D.
Culcer
,
A.
Laucht
,
A.
Morello
, and
A.
Dzurak
, “
Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction
,”
Phys. Rev. X
9
,
021028
(
2019
).
4.
D. M.
Zajac
,
A. J.
Sigillito
,
M.
Russ
,
F.
Borjans
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
Resonantly driven CNOT gate for electron spins
,”
Science
359
,
439
442
(
2018
).
5.
A. R.
Mills
,
C. R.
Guinn
,
M. J.
Gullans
,
A. J.
Sigillito
,
M. M.
Feldman
,
E.
Nielsen
, and
J. R.
Petta1
, “
Two-qubit silicon quantum processor with operation fidelity exceeding 99%
,”
Sci. Adv.
8
,
eabn5130
(
2022
).
6.
S. G. J.
Philips
,
M. T.
Madzik
,
S. V.
Amitonov
,
S. L.
de Snoo
,
M.
Russ
,
N.
Kalhor
,
C.
Volk
,
W. I. L.
Lawrie
,
D.
Brousse
,
L.
Tryputen
,
B. P.
Wuetz
,
A.
Sammak
,
M.
Veldhorst
,
G.
Scappucci
, and
L. M. K.
Vandersypen
, “
Universal control of a six-qubit quantum processor in silicon
,”
Nature
609
,
919
924
(
2022
).
7.
Y.
Tokura
,
W. G.
van der Wiel
,
T.
Obata
, and
S.
Tarucha
, “
Coherent single electron spin control in a slanting Zeeman field
,”
Phys. Rev. Lett.
96
,
047202
(
2006
).
8.
R.
Neumann
and
L. R.
Schreiber
, “
Coherent single electron spin control in a slanting Zeeman field
,”
J. Appl. Phys.
117
,
193903
(
2015
).
9.
M.
Aldeghi
,
R.
Allenspach
, and
G.
Salis
, “
Modular nanomagnet design for spin qubits confined in a linear chain
,”
Appl. Phys. Lett.
122
,
134003
(
2023
).
10.
K.
Takeda
,
J.
Kamioka
,
T.
Otsuka
,
J.
Yoneda
,
T.
Nakajima
,
M. R.
Delbecq
,
S.
Amaha
,
G.
Allison
,
T.
Kodera
,
S.
Oda
, and
S.
Tarucha
, “
A fault-tolerant addressable spin qubit in a natural silicon quantum dot
,”
Sci. Adv.
2
,
e1600694
(
2016
).
11.
R.
Zhao
,
T.
Tanttu
,
K. Y.
Tan
,
B.
Hensen
,
K. W.
Chan
,
J. C. C.
Hwang
,
R. C. C.
Leon
,
C. H.
Yang
,
W.
Gilbert
,
F. E.
Hudson
,
K. M.
Itoh
,
A. A.
Kiselev
,
T. D.
Ladd
,
A.
Morello
,
A.
Laucht
, and
A. S.
Dzurak
, “
Single-spin qubits in isotopically enriched silicon at low magnetic field
,”
Nat. Commun.
10
,
5500
(
2019
).
12.
A.
Corna
,
L.
Bourdet
,
R.
Maurand
,
A.
Crippa
,
D.
Kotekar-Patil
,
H.
Bohuslavskyi
,
R.
Laviéville
,
L.
Hutin
,
S.
Barraud
,
X.
Jehl
,
M.
Vinet
,
S.
De Franceschi
,
Y.-M.
Niquet
, and
M.
Sanquer
, “
Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot
,”
NPJ Quantum Inf.
4
,
6
(
2018
).
13.
T.
Struck
,
A.
Hollmann
,
F.
Schauer
,
O.
Fedorets
,
A.
Schmidbauer
,
K.
Sawano
,
H.
Riemann
,
N. V.
Abrosimov
,
Ł.
Cywiński
,
D.
Bougeard
, and
L. R.
Schreiber
, “
Low-frequency spin qubit detuning noise in highly purified 28Si/SiGe
,”
NPJ Quantum Inf.
6
,
40
(
2020
).
14.
R.
Li
,
L.
Petit
,
D. P.
Franke
,
J. P.
Dehollain
,
J.
Helsen
,
M.
Steudtner
,
N. K.
Thomas
,
Z. R.
Yoscovits
,
K. J.
Singh
,
S.
Wehner
,
L. M. K.
Vandersypen
,
J. S.
Clarke
, and
M.
Veldhorst
, “
A crossbar network for silicon quantum dot qubits
,”
Sci. Adv.
4
,
eaar3960
(
2018
).
15.
I.
Heinz
and
G.
Burkard
, “
Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays
,”
Phys. Rev. B
104
,
045420
(
2021
).
16.
E. J.
Connors
,
J.
Nelson
,
H.
Qiao
,
L. F.
Edge
, and
J. M.
Nichol
, “
Low-frequency charge noise in Si/SiGe quantum dots
,”
Phys. Rev. B
100
,
165305
(
2019
).
17.
E. J.
Connors
,
J.
Nelson
,
L. F.
Edge
, and
J. M.
Nichol
, “
Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations
,”
Nat. Commun.
13
,
940
(
2022
).
18.
J.
Yoneda
,
J. S.
Rojas-Arias
,
P.
Stano
,
K.
Takeda
,
A.
Noiri
,
T.
Nakajima
,
D.
Loss
, and
S.
Tarucha
, “
Noise-correlation spectrum for a pair of spin qubits in silicon
,” arXiv:2208.14150 (
2022
).
19.
J. S.
Rojas-Arias
,
A.
Noiri
,
P.
Stano
,
T.
Nakajima
,
J.
Yoneda
,
K.
Takeda
,
T.
Kobayashi
,
A.
Sammak
,
G.
Scappucci
,
D.
Loss
, and
S.
Tarucha
, “
Spatial noise correlations beyond nearest-neighbor in 28Si/SiGe spin qubits
,” arXiv:2302.11717 (
2023
).
20.
M. M. E. K.
Shehata
,
G.
Simion
,
R.
Li
,
F. A.
Mohiyaddin
,
D.
Wan
,
M.
Mongillo
,
B.
Govoreanu
,
I.
Radu
,
K.
De Greve
, and
P.
Van Dorpe
, “
Modelling semiconductor spin qubits and their charge noise environment for quantum gate fidelity estimation
,” arXiv:2210.04539 (
2022
).
21.
M.
Kȩpa
,
N.
Focke
,
Ł.
Cywiński
, and
J. A.
Krzywda
, “
Simulation of 1/f charge noise affecting a quantum dot in a Si/SiGe structure
,” arXiv:2303.13968 (
2023
).
22.
D.
Culcer
and
N. M.
Zimmerman
, “
Dephasing of Si singlet-triplet qubits due to charge and spin defects
,”
Appl. Phys. Lett.
102
,
232108
(
2013
).
23.
B. P.
Wuetz
,
D. D.
Esposti
,
A.-M. J.
Zwerver
,
S. V.
Amitonov
,
M.
Botifoll
,
J.
Arbiol
,
A.
Sammak
,
L. M. K.
Vandersypen
,
M.
Russ
, and
G.
Scappucci
, “
Reducing charge noise in quantum dots by using thin silicon quantum wells
,”
Nat. Commun.
14
(
1
),
1385
(
2023
).
24.
J.
Schriefl
,
Y.
Makhlin
,
A.
Shnirman
, and
G.
Schön
, “
Decoherence from ensembles of two-level fluctuators
,”
New J. Phys.
8
,
1
(
2006
).
25.
X.
You
,
A. A.
Clerk
, and
J.
Koch
, “
Positive- and negative-frequency noise from an ensemble of two-level fluctuators
,”
Phys. Rev. Res.
3
,
013045
(
2021
).
26.
A.
Shnirman
,
G.
Schön
,
I.
Martin
, and
Y.
Makhlin
, “
Low- and high-frequency noise from coherent two-level systems
,”
Phys. Rev. Lett.
94
,
127002
(
2005
).
27.
Z.
Shi
,
C. B.
Simmons
,
D. R.
Ward
,
J. R.
Prance
,
R. T.
Mohr
,
T. S.
Koh
,
J. K.
Gamble
,
X.
Wu
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
, and
M. A.
Eriksson
, “
Coherent quantum oscillations and echo measurements of a Si charge qubit
,”
Phys. Rev. B
88
,
075416
(
2013
).
28.
U.
Güngördü
and
J. P.
Kestner
, “
Indications of a soft cutoff frequency in the charge noise of a Si/SiGe quantum dot spin qubit
,”
Phys. Rev. B
99
,
081301
(
2019
).
29.
B.
Shalak
,
C.
Delerue
, and
Y.-M.
Niquet
, “
Modelling of spin decoherence in a Si hole qubit perturbed by a single charge fluctuator
,” arXiv:2210.10476 (
2022
).
You do not currently have access to this content.