We propose and investigate the performance of a hybrid quantum battery, the so-called Kerr quantum battery, which consists of two interacting quantum oscillators, i.e., the charger is a harmonic oscillator and the battery is an anharmonic oscillator involving the Kerr nonlinearity. Such a setup creates nonuniform spacing between energy levels of the quantum oscillator that increases with the energy level. We find that the Kerr quantum battery can store more energy than the qubit battery and reaches maximum stored energy faster than the harmonic oscillator battery. In particular, the average charging power of the Kerr quantum battery is larger than the qubit battery. Furthermore, most of the stored energy in the Kerr quantum battery can be extracted for work. All of the properties of the Kerr quantum battery are controlled by the strength of nonlinearity, in which the enhancement of the nonlinearity transforms the battery from a harmonic oscillator to a qubit.

1.
R.
Alicki
and
M.
Fannes
, “
Entanglement boost for extractable work from ensembles of quantum batteries
,”
Phys. Rev. E
87
,
042123
(
2013
).
2.
K. V.
Hovhannisyan
,
M.
Perarnau-Llobet
,
M.
Huber
, and
A.
Acín
, “
Entanglement generation is not necessary for optimal work extraction
,”
Phys. Rev. Lett.
111
,
240401
(
2013
).
3.
F. C.
Binder
,
S.
Vinjanampathy
,
K.
Modi
, and
J.
Goold
, “
Quantacell: Powerful charging of quantum batteries
,”
New J. Phys.
17
,
075015
(
2015
).
4.
F.
Campaioli
,
F. A.
Pollock
,
F. C.
Binder
,
L.
Céleri
,
J.
Goold
,
S.
Vinjanampathy
, and
K.
Modi
, “
Enhancing the charging power of quantum batteries
,”
Phys. Rev. Lett.
118
,
150601
(
2017
).
5.
T. P.
Le
,
J.
Levinsen
,
K.
Modi
,
M. M.
Parish
, and
F. A.
Pollock
, “
Spin-chain model of a many-body quantum battery
,”
Phys. Rev. A
97
,
022106
(
2018
).
6.
I.
Henao
and
R. M.
Serra
, “
Role of quantum coherence in the thermodynamics of energy transfer
,”
Phys. Rev. E
97
,
062105
(
2018
).
7.
G. M.
Andolina
,
D.
Farina
,
A.
Mari
,
V.
Pellegrini
,
V.
Giovannetti
, and
M.
Polini
, “
Charger-mediated energy transfer in exactly solvable models for quantum batteries
,”
Phys. Rev. B
98
,
205423
(
2018
).
8.
G. M.
Andolina
,
M.
Keck
,
A.
Mari
,
M.
Campisi
,
V.
Giovannetti
, and
M.
Polini
, “
Extractable work, the role of correlations, and asymptotic freedom in quantum batteries
,”
Phys. Rev. Lett.
122
,
047702
(
2019
).
9.
D.
Farina
,
G. M.
Andolina
,
A.
Mari
,
M.
Polini
, and
V.
Giovannetti
, “
Charger-mediated energy transfer for quantum batteries: An open-system approach
,”
Phys. Rev. B
99
,
035421
(
2019
).
10.
D.
Rossini
,
G. M.
Andolina
,
D.
Rosa
,
M.
Carrega
, and
M.
Polini
, “
Quantum advantage in the charging process of Sachdev-Ye-Kitaev batteries
,”
Phys. Rev. Lett.
125
,
236402
(
2020
).
11.
V.
Shaghaghi
,
V.
Singh
,
G.
Benenti
, and
D.
Rosa
, “
Micromasers as quantum batteries
,”
Quantum Sci. Technol.
7
,
04LT01
(
2022
).
12.
C.
Rodríguez
,
D.
Rosa
, and
J.
Olle
, “
AI-discovery of a new charging protocol in a micromaser quantum battery
,” arXiv:2301.09408 (
2023
).
13.
D.
Rosa
,
D.
Rossini
,
G. M.
Andolina
,
M.
Polini
, and
M.
Carrega
, “
Ultra-stable charging of fast-scrambling SYK quantum batteries
,”
J. High Energy Phys.
2020
,
67
.
14.
J.-Y.
Gyhm
,
D.
Šafránek
, and
D.
Rosa
, “
Quantum charging advantage cannot be extensive without global operations
,”
Phys. Rev. Lett.
128
,
140501
(
2022
).
15.
A. E.
Allahverdyan
,
R.
Balian
, and
T. M.
Nieuwenhuizen
, “
Maximal work extraction from finite quantum systems
,”
Europhys. Lett.
67
,
565
(
2004
).
16.
A.
Imamoḡlu
,
H.
Schmidt
,
G.
Woods
, and
M.
Deutsch
, “
Strongly interacting photons in a nonlinear cavity
,”
Phys. Rev. Lett.
79
,
1467
(
1997
).
17.
Y.
Zhu
, “
Large Kerr nonlinearities on cavity-atom polaritons
,”
Opt. Lett.
35
,
303
305
(
2010
).
18.
D.
Farina
,
V.
Giovannetti
, and
M.
Polini
, “
Dissipative quantum systems: Theoretical foundations and applications
,” Ph.D. thesis (
Scuola Normale Superiore
,
Italy
,
2021
).
19.
H. Y.
Yuan
,
S.
Zheng
,
Q. Y.
He
,
J.
Xiao
, and
R. A.
Duine
, “
Unconventional magnon excitation by off-resonant microwaves
,”
Phys. Rev. B
103
,
134409
(
2021
).
20.
G.-Q.
Zhang
,
Z.
Chen
,
W.
Xiong
,
C.-H.
Lam
, and
J. Q.
You
, “
Parity-symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic system
,”
Phys. Rev. B
104
,
064423
(
2021
).
21.
D.
Walls
and
G.
Milburn
,
Quantum Optics
(
Springer
,
Berlin Heidelberg
,
2008
).
22.
C.
Gerry
,
P.
Knight
, and
P. L.
Knight
,
Introductory Quantum Optics
(
Cambridge University Press
,
2005
).
23.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
,
1997
).
24.
X. H.
Zhang
and
H. U.
Baranger
, “
Driven-dissipative phase transition in a Kerr oscillator: From semiclassical PT symmetry to quantum fluctuations
,”
Phys. Rev. A
103
,
033711
(
2021
).
25.
D.
Manzano
, “
A short introduction to the Lindblad master equation
,”
AIP Adv.
10
,
025106
(
2020
).
26.
A.
Delmonte
,
A.
Crescente
,
M.
Carrega
,
D.
Ferraro
, and
M.
Sassetti
, “
Characterization of a two-photon quantum battery: Initial conditions, stability and work extraction
,”
Entropy
23
,
612
(
2021
).
27.
A.
Crescente
,
M.
Carrega
,
M.
Sassetti
, and
D.
Ferraro
, “
Ultrafast charging in a two-photon Dicke quantum battery
,”
Phys. Rev. B
102
,
245407
(
2020
).
28.
F.
Tabesh
,
F.
Kamin
, and
S.
Salimi
, “
Environment-mediated charging process of quantum batteries
,”
Phys. Rev. A
102
,
052223
(
2020
).
29.
G.
Francica
,
F. C.
Binder
,
G.
Guarnieri
,
M. T.
Mitchison
,
J.
Goold
, and
F.
Plastina
, “
Quantum coherence and ergotropy
,”
Phys. Rev. Lett.
125
,
180603
(
2020
).
30.
B.
Çakmak
, “
Ergotropy from coherences in an open quantum system
,”
Phys. Rev. E
102
,
042111
(
2020
).
31.
F.
Barra
, “
Dissipative charging of a quantum battery
,”
Phys. Rev. Lett.
122
,
210601
(
2019
).
32.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
1772
(
2012
).
33.
J.
Koch
,
M. Y.
Terri
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
34.
M. J.
Peterer
,
S. J.
Bader
,
X.
Jin
,
F.
Yan
,
A.
Kamal
,
T. J.
Gudmundsen
,
P. J.
Leek
,
T. P.
Orlando
,
W. D.
Oliver
, and
S.
Gustavsson
, “
Coherence and decay of higher energy levels of a superconducting transmon qubit
,”
Phys. Rev. Lett.
114
,
010501
(
2015
).
35.
C.
Wang
,
X.
Li
,
H.
Xu
,
Z.
Li
,
J.
Wang
,
Z.
Yang
,
Z.
Mi
,
X.
Liang
,
T.
Su
,
C.
Yang
et al, “
Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds
,”
npj Quantum Inf.
8
,
3
(
2022
).
36.
A. P.
Place
,
L. V.
Rodgers
,
P.
Mundada
,
B. M.
Smitham
,
M.
Fitzpatrick
,
Z.
Leng
,
A.
Premkumar
,
J.
Bryon
,
A.
Vrajitoarea
,
S.
Sussman
et al, “
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
,”
Nat. Commun.
12
,
1779
(
2021
).
You do not currently have access to this content.