On-chip terahertz (THz) biosensors have enormous potential in advancing the development of integrable devices for real-time, label-free, and noninvasive detection of proteins, DNA, and cancerous tissue. However, high absorption of THz waves by water necessitates evanescent field-based biosensing. The conventional on-chip THz biosensors with small mode confinement volumes and scaling sensitivity to defects severely limit the interaction of analyte with the electromagnetic field. Here, we reveal a topological waveguide cavity system with topologically protected propagating interfacial modes, exhibiting evanescent waves with an out-of-plane field extent of 0.3 λ 0, where λ 0 is the wavelength corresponding to the cavity resonance frequency. Our experiments involving biomolecule detection and leaf-hydration monitoring show that the near-field of high-Q topological cavity resonances accurately detects minute frequency shifts over extended periods, facilitating real-time sensing and monitoring of biological matter. Implementation of topologically protected evanescent fields in waveguide-cavity systems will enhance on-chip THz biosensing.

1.
M.
Beruete
and
I.
Jáuregui‐López
, “
Terahertz sensing based on metasurfaces
,”
Adv. Opt. Mater.
8
(
3
),
1900721
(
2020
).
2.
J.
Neu
and
C. A.
Schmuttenmaer
, “
Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)
,”
J. Appl. Phys.
124
(
23
),
231101
(
2018
).
3.
L.
Wei
,
L.
Yu
,
H.
Jiaoqi
,
H.
Guorong
,
Z.
Yang
, and
F.
Weiling
, “
Application of terahertz spectroscopy in biomolecule detection
,”
Front. Lab. Med.
2
(
4
),
127
133
(
2018
).
4.
J. S.
Melinger
,
N.
Laman
,
S. S.
Harsha
,
S.
Cheng
, and
D.
Grischkowsky
, “
High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films
,”
J. Phys. Chem. A
111
(
43
),
10977
10987
(
2007
).
5.
J.
Qin
,
L.
Xie
, and
Y.
Ying
, “
A high-sensitivity terahertz spectroscopy technology for tetracycline hydrochloride detection using metamaterials
,”
Food Chem.
211
,
300
305
(
2016
).
6.
L.
Cong
,
S.
Tan
,
R.
Yahiaoui
,
F.
Yan
,
W.
Zhang
, and
R.
Singh
, “
Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces
,”
Appl. Phys. Lett.
106
(
3
),
031107
(
2015
).
7.
A.
Ahmadivand
,
B.
Gerislioglu
,
Z.
Ramezani
,
A.
Kaushik
,
P.
Manickam
, and
S. A.
Ghoreishi
, “
Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins
,”
Biosens. Bioelectron.
177
,
112971
(
2021
).
8.
D. M.
Mittleman
,
R. H.
Jacobsen
,
R.
Neelamani
,
R. G.
Baraniuk
, and
M. C.
Nuss
, “
Gas sensing using terahertz time-domain spectroscopy
,”
Appl. Phys. B
67
(
3
),
379
390
(
1998
).
9.
I.
Al-Naib
, “
Terahertz asymmetric S-shaped complementary metasurface biosensor for glucose concentration
,”
Biosensors
12
(
8
),
609
(
2022
).
10.
I.
Al-Naib
, “
Sensing glucose concentration using symmetric metasurfaces under oblique incident terahertz waves
,”
Crystals
11
(
12
),
1578
(
2021
).
11.
D.-K.
Lee
,
J.-H.
Kang
,
J.-S.
Lee
,
H.-S.
Kim
,
C.
Kim
,
J.
Hun Kim
,
T.
Lee
,
J.-H.
Son
,
Q.-H.
Park
, and
M.
Seo
, “
Highly sensitive and selective sugar detection by terahertz nano-antennas
,”
Sci. Rep.
5
(
1
),
15459
(
2015
).
12.
G.
Wang
,
F.
Zhu
,
T.
Lang
,
J.
Liu
,
Z.
Hong
, and
J.
Qin
, “
All-metal terahertz metamaterial biosensor for protein detection
,”
Nanoscale Res. Lett.
16
(
1
),
109
(
2021
).
13.
J. F.
O'Hara
,
R.
Singh
,
I.
Brener
,
E.
Smirnova
,
J.
Han
,
A. J.
Taylor
, and
W.
Zhang
, “
Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations
,”
Opt. Express
16
(
3
),
1786
1795
(
2008
).
14.
L.
Liu
,
Z.
Jiang
,
S.
Rahman
,
M. I. B.
Shams
,
B.
Jing
,
A.
Kannegulla
, and
L.-J.
Cheng
, “
Quasi-optical terahertz microfluidic devices for chemical sensing and imaging
,”
Micromachines
7
(
5
),
75
(
2016
).
15.
B. M. A.
Rahman
,
C.
Viphavakit
,
R.
Chitaree
,
S.
Ghosh
,
A. K.
Pathak
,
S.
Verma
, and
N.
Sakda
, “
Optical fiber, nanomaterial, and THz-metasurface-mediated nano-biosensors: A review
,”
Biosensors
12
(
1
),
42
(
2022
).
16.
J.
Zhou
,
X.
Zhao
,
G.
Huang
,
X.
Yang
,
Y.
Zhang
,
X.
Zhan
,
H.
Tian
,
Y.
Xiong
,
Y.
Wang
, and
W.
Fu
, “
Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments
,”
ACS Sens.
6
(
5
),
1884
1890
(
2021
).
17.
T.
Suzuki
,
K.
Takayama
,
S.
Yamauchi
,
Y.
Imai
, and
M.
Tonouchi
, in
Proceedings of 34th International Conference on Infrared Millimeter and Terahertz Waves
(
IEEE
,
2009
), pp.
1
2
.
18.
R. A. S. D.
Koala
,
M.
Fujita
, and
T.
Nagatsuma
, “
Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems
,”
Nanophotonics
11
(
9
),
1741
1759
(
2022
).
19.
A.
Kumar
,
M.
Gupta
,
P.
Pitchappa
,
T. C.
Tan
,
U.
Chattopadhyay
,
G.
Ducournau
,
N.
Wang
,
Y.
Chong
, and
R.
Singh
, “
Active ultrahigh-Q (0.2 × 106) THz topological cavities on a chip
,”
Adv. Mater.
34
(
27
),
2202370
(
2022
).
20.
K.
Okamoto
,
K.
Tsuruda
,
S.
Diebold
,
S.
Hisatake
,
M.
Fujita
, and
T.
Nagatsuma
, “
Terahertz sensor using photonic crystal cavity and resonant tunneling diodes
,”
J. Infrared Millim. THz Waves
38
(
9
),
1085
1097
(
2017
).
21.
A.
Kumar
,
M.
Gupta
,
P.
Pitchappa
,
Y. J.
Tan
,
N.
Wang
, and
R.
Singh
, “
Topological sensor on a silicon chip
,”
Appl. Phys. Lett.
121
(
1
),
011101
(
2022
).
22.
S.
Kasai
,
A.
Tanabashi
,
K.
Kajiki
,
T.
Itsuji
,
R.
Kurosaka
,
H.
Yoneyama
,
M.
Yamashita
,
H.
Ito
, and
T.
Ouchi
, “
Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors
,”
Appl. Phys. Express
2
(
6
),
062401
(
2009
).
23.
Y.
Zhao
,
K.
Vora
,
X.
Liu
,
G.
vom Bögel
,
K.
Seidl
, and
J. C.
Balzer
, “
Photonic crystal resonator in the millimeter/terahertz range as a thin film sensor for future biosensor applications
,”
J. Infrared Millim. THz Waves
43
(
5
),
426
444
(
2022
).
24.
S. M.
Hanham
,
C.
Watts
,
W. J.
Otter
,
S.
Lucyszyn
, and
N.
Klein
, “
Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies
,”
Appl. Phys. Lett.
107
(
3
),
032903
(
2015
).
25.
C. S.
Huertas
,
O.
Calvo-Lozano
,
A.
Mitchell
, and
L. M.
Lechuga
, “
Advanced evanescent-wave optical biosensors for the detection of nucleic acids: An analytic perspective
,”
Front. Chem.
7
,
724
(
2019
).
26.
B.
You
,
T.-A.
Liu
,
J.-L.
Peng
,
C.-L.
Pan
, and
J.-Y.
Lu
, “
A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection
,”
Opt. Express
17
(
23
),
20675
20683
(
2009
).
27.
K.
Tsuruda
,
M.
Fujita
, and
T.
Nagatsuma
, “
Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab
,”
Opt. Express
23
(
25
),
31977
31990
(
2015
).
28.
J. M.
Choi
,
R. K.
Lee
, and
A.
Yariv
, “
Control of critical coupling in a ring resonator–fiber configuration: Application to wavelength-selective switching, modulation, amplification, and oscillation
,”
Opt. Lett.
26
(
16
),
1236
1238
(
2001
).
29.
J.-W.
Dong
,
X.-D.
Chen
,
H.
Zhu
,
Y.
Wang
, and
X.
Zhang
, “
Valley photonic crystals for control of spin and topology
,”
Nat. Mater.
16
(
3
),
298
302
(
2017
).
30.
H.
Xue
,
Y.
Yang
, and
B.
Zhang
, “
Topological valley photonics: Physics and device applications
,”
Adv. Photonics Res.
2
(
8
),
2100013
(
2021
).
31.
H. M.
Price
,
T.
Ozawa
, and
I.
Carusotto
, “
Quantum mechanics with a momentum-space artificial magnetic field
,”
Phys. Rev. Lett.
113
(
19
),
190403
(
2014
).
32.
Photonic Crystals: Molding the Flow of Light
,
2nd ed.
, edited by
J. D.
Joannopoulos
(
Princeton University Press
,
Princeton
,
2008
).
33.
W.
Zhang
and
O. J. F.
Martin
, “
A universal law for plasmon resonance shift in biosensing
,”
ACS Photonics
2
(
1
),
144
150
(
2015
).
34.
Y. K.
Srivastava
,
L.
Cong
, and
R.
Singh
, “
Dual-surface flexible THz Fano metasensor
,”
Appl. Phys. Lett.
111
(
20
),
201101
(
2017
).
35.
S.
Börner
,
R.
Orghici
,
S. R.
Waldvogel
,
U.
Willer
, and
W.
Schade
, “
Evanescent field sensors and the implementation of waveguiding nanostructures
,”
Appl. Opt.
48
(
4
),
B183
B189
(
2009
).
36.
B.
Li
,
X.
Zhang
,
R.
Wang
,
Y.
Mei
, and
J.
Ma
, “
Leaf water status monitoring by scattering effects at terahertz frequencies
,”
Spectrochim. Acta A
245
,
118932
(
2021
).
37.
D. M.
Mittleman
, “
Twenty years of terahertz imaging [Invited]
,”
Opt. Express
26
(
8
),
9417
9431
(
2018
).
38.
R.
Gente
and
M.
Koch
, “
Monitoring leaf water content with THz and sub-THz waves
,”
Plant Methods
11
(
1
),
15
(
2015
).
39.
A. G.
Markelz
,
A.
Roitberg
, and
E. J.
Heilweil
, “
Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz
,”
Chem. Phys. Lett.
320
(
1
),
42
48
(
2000
).
40.
X.
Hou
,
X.
Chen
,
T.
Li
,
Y.
Li
,
Z.
Tian
, and
M.
Wang
, “
Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection
,”
Opt. Mater. Express
11
(
7
),
2268
2277
(
2021
).
41.
Q.
Chen
,
L.
Zhang
,
F.
Chen
,
Q.
Yan
,
R.
Xi
,
H.
Chen
, and
Y.
Yang
, “
Photonic topological valley-locked waveguides
,”
ACS Photonics
8
(
5
),
1400
1406
(
2021
).
42.
X.
Gao
,
L.
Yang
,
H.
Lin
,
L.
Zhang
,
J.
Li
,
F.
Bo
,
Z.
Wang
, and
L.
Lu
, “
Dirac-vortex topological cavities
,”
Nat. Nanotechnol.
15
(
12
),
1012
1018
(
2020
).
43.
J. C.
Budich
and
E. J.
Bergholtz
, “
Non-Hermitian topological sensors
,”
Phys. Rev. Lett.
125
(
18
),
180403
(
2020
).

Supplementary Material

You do not currently have access to this content.